MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnfi Structured version   Visualization version   Unicode version

Theorem wwlksnfi 26801
Description: The number of walks represented by words of fixed length is finite if the number of vertices is finite (in the graph). (Contributed by Alexander van der Vekens, 30-Jul-2018.) (Revised by AV, 19-Apr-2021.)
Assertion
Ref Expression
wwlksnfi  |-  ( (Vtx
`  G )  e. 
Fin  ->  ( N WWalksN  G
)  e.  Fin )

Proof of Theorem wwlksnfi
Dummy variables  i  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wwlksn 26729 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( N WWalksN  G )  =  {
w  e.  (WWalks `  G )  |  (
# `  w )  =  ( N  + 
1 ) } )
2 df-rab 2921 . . . . . . . 8  |-  { w  e.  (WWalks `  G )  |  ( # `  w
)  =  ( N  +  1 ) }  =  { w  |  ( w  e.  (WWalks `  G )  /\  ( # `
 w )  =  ( N  +  1 ) ) }
31, 2syl6eq 2672 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N WWalksN  G )  =  {
w  |  ( w  e.  (WWalks `  G
)  /\  ( # `  w
)  =  ( N  +  1 ) ) } )
43adantl 482 . . . . . 6  |-  ( ( G  e.  _V  /\  N  e.  NN0 )  -> 
( N WWalksN  G )  =  { w  |  ( w  e.  (WWalks `  G )  /\  ( # `
 w )  =  ( N  +  1 ) ) } )
5 eqid 2622 . . . . . . . . . . 11  |-  (Vtx `  G )  =  (Vtx
`  G )
6 eqid 2622 . . . . . . . . . . 11  |-  (Edg `  G )  =  (Edg
`  G )
75, 6iswwlks 26728 . . . . . . . . . 10  |-  ( w  e.  (WWalks `  G
)  <->  ( w  =/=  (/)  /\  w  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) )
87a1i 11 . . . . . . . . 9  |-  ( ( G  e.  _V  /\  N  e.  NN0 )  -> 
( w  e.  (WWalks `  G )  <->  ( w  =/=  (/)  /\  w  e. Word 
(Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) ) )
98anbi1d 741 . . . . . . . 8  |-  ( ( G  e.  _V  /\  N  e.  NN0 )  -> 
( ( w  e.  (WWalks `  G )  /\  ( # `  w
)  =  ( N  +  1 ) )  <-> 
( ( w  =/=  (/)  /\  w  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  G ) )  /\  ( # `  w
)  =  ( N  +  1 ) ) ) )
109abbidv 2741 . . . . . . 7  |-  ( ( G  e.  _V  /\  N  e.  NN0 )  ->  { w  |  (
w  e.  (WWalks `  G )  /\  ( # `
 w )  =  ( N  +  1 ) ) }  =  { w  |  (
( w  =/=  (/)  /\  w  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w
)  =  ( N  +  1 ) ) } )
11 3anan12 1051 . . . . . . . . . . 11  |-  ( ( w  =/=  (/)  /\  w  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  <-> 
( w  e. Word  (Vtx `  G )  /\  (
w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) ) )
1211anbi1i 731 . . . . . . . . . 10  |-  ( ( ( w  =/=  (/)  /\  w  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w
)  =  ( N  +  1 ) )  <-> 
( ( w  e. Word 
(Vtx `  G )  /\  ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) )  /\  ( # `  w )  =  ( N  +  1 ) ) )
13 anass 681 . . . . . . . . . 10  |-  ( ( ( w  e. Word  (Vtx `  G )  /\  (
w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) )  /\  ( # `  w )  =  ( N  +  1 ) )  <->  ( w  e. Word 
(Vtx `  G )  /\  ( ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w )  =  ( N  + 
1 ) ) ) )
1412, 13bitri 264 . . . . . . . . 9  |-  ( ( ( w  =/=  (/)  /\  w  e. Word  (Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w
)  =  ( N  +  1 ) )  <-> 
( w  e. Word  (Vtx `  G )  /\  (
( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  G ) )  /\  ( # `  w
)  =  ( N  +  1 ) ) ) )
1514abbii 2739 . . . . . . . 8  |-  { w  |  ( ( w  =/=  (/)  /\  w  e. Word 
(Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w
)  =  ( N  +  1 ) ) }  =  { w  |  ( w  e. Word 
(Vtx `  G )  /\  ( ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w )  =  ( N  + 
1 ) ) ) }
16 df-rab 2921 . . . . . . . 8  |-  { w  e. Word  (Vtx `  G )  |  ( ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w )  =  ( N  + 
1 ) ) }  =  { w  |  ( w  e. Word  (Vtx `  G )  /\  (
( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  G ) )  /\  ( # `  w
)  =  ( N  +  1 ) ) ) }
1715, 16eqtr4i 2647 . . . . . . 7  |-  { w  |  ( ( w  =/=  (/)  /\  w  e. Word 
(Vtx `  G )  /\  A. i  e.  ( 0..^ ( ( # `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w
)  =  ( N  +  1 ) ) }  =  { w  e. Word  (Vtx `  G )  |  ( ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w )  =  ( N  + 
1 ) ) }
1810, 17syl6eq 2672 . . . . . 6  |-  ( ( G  e.  _V  /\  N  e.  NN0 )  ->  { w  |  (
w  e.  (WWalks `  G )  /\  ( # `
 w )  =  ( N  +  1 ) ) }  =  { w  e. Word  (Vtx `  G )  |  ( ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  G ) )  /\  ( # `  w
)  =  ( N  +  1 ) ) } )
194, 18eqtrd 2656 . . . . 5  |-  ( ( G  e.  _V  /\  N  e.  NN0 )  -> 
( N WWalksN  G )  =  { w  e. Word  (Vtx `  G )  |  ( ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  G ) )  /\  ( # `  w
)  =  ( N  +  1 ) ) } )
2019adantr 481 . . . 4  |-  ( ( ( G  e.  _V  /\  N  e.  NN0 )  /\  (Vtx `  G )  e.  Fin )  ->  ( N WWalksN  G )  =  {
w  e. Word  (Vtx `  G
)  |  ( ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  G ) )  /\  ( # `  w
)  =  ( N  +  1 ) ) } )
21 peano2nn0 11333 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
2221adantl 482 . . . . . . . 8  |-  ( ( G  e.  _V  /\  N  e.  NN0 )  -> 
( N  +  1 )  e.  NN0 )
2322anim2i 593 . . . . . . 7  |-  ( ( (Vtx `  G )  e.  Fin  /\  ( G  e.  _V  /\  N  e.  NN0 ) )  -> 
( (Vtx `  G
)  e.  Fin  /\  ( N  +  1
)  e.  NN0 )
)
2423ancoms 469 . . . . . 6  |-  ( ( ( G  e.  _V  /\  N  e.  NN0 )  /\  (Vtx `  G )  e.  Fin )  ->  (
(Vtx `  G )  e.  Fin  /\  ( N  +  1 )  e. 
NN0 ) )
25 wrdnfi 13338 . . . . . 6  |-  ( ( (Vtx `  G )  e.  Fin  /\  ( N  +  1 )  e. 
NN0 )  ->  { w  e. Word  (Vtx `  G )  |  ( # `  w
)  =  ( N  +  1 ) }  e.  Fin )
2624, 25syl 17 . . . . 5  |-  ( ( ( G  e.  _V  /\  N  e.  NN0 )  /\  (Vtx `  G )  e.  Fin )  ->  { w  e. Word  (Vtx `  G )  |  ( # `  w
)  =  ( N  +  1 ) }  e.  Fin )
27 simpr 477 . . . . . . 7  |-  ( ( ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  G ) )  /\  ( # `  w
)  =  ( N  +  1 ) )  ->  ( # `  w
)  =  ( N  +  1 ) )
2827rgenw 2924 . . . . . 6  |-  A. w  e. Word  (Vtx `  G )
( ( ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w )  =  ( N  + 
1 ) )  -> 
( # `  w )  =  ( N  + 
1 ) )
29 ss2rab 3678 . . . . . 6  |-  ( { w  e. Word  (Vtx `  G )  |  ( ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  G ) )  /\  ( # `  w
)  =  ( N  +  1 ) ) }  C_  { w  e. Word  (Vtx `  G )  |  ( # `  w
)  =  ( N  +  1 ) }  <->  A. w  e. Word  (Vtx `  G ) ( ( ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  G ) )  /\  ( # `  w
)  =  ( N  +  1 ) )  ->  ( # `  w
)  =  ( N  +  1 ) ) )
3028, 29mpbir 221 . . . . 5  |-  { w  e. Word  (Vtx `  G )  |  ( ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w )  =  ( N  + 
1 ) ) } 
C_  { w  e. Word 
(Vtx `  G )  |  ( # `  w
)  =  ( N  +  1 ) }
31 ssfi 8180 . . . . 5  |-  ( ( { w  e. Word  (Vtx `  G )  |  (
# `  w )  =  ( N  + 
1 ) }  e.  Fin  /\  { w  e. Word 
(Vtx `  G )  |  ( ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w )  =  ( N  + 
1 ) ) } 
C_  { w  e. Word 
(Vtx `  G )  |  ( # `  w
)  =  ( N  +  1 ) } )  ->  { w  e. Word  (Vtx `  G )  |  ( ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w )  =  ( N  + 
1 ) ) }  e.  Fin )
3226, 30, 31sylancl 694 . . . 4  |-  ( ( ( G  e.  _V  /\  N  e.  NN0 )  /\  (Vtx `  G )  e.  Fin )  ->  { w  e. Word  (Vtx `  G )  |  ( ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w )  =  ( N  + 
1 ) ) }  e.  Fin )
3320, 32eqeltrd 2701 . . 3  |-  ( ( ( G  e.  _V  /\  N  e.  NN0 )  /\  (Vtx `  G )  e.  Fin )  ->  ( N WWalksN  G )  e.  Fin )
3433ex 450 . 2  |-  ( ( G  e.  _V  /\  N  e.  NN0 )  -> 
( (Vtx `  G
)  e.  Fin  ->  ( N WWalksN  G )  e.  Fin ) )
35 wwlksnndef 26800 . . . . 5  |-  ( ( G  e/  _V  \/  N  e/  NN0 )  -> 
( N WWalksN  G )  =  (/) )
36 ioran 511 . . . . . 6  |-  ( -.  ( G  e/  _V  \/  N  e/  NN0 )  <->  ( -.  G  e/  _V  /\ 
-.  N  e/  NN0 ) )
37 nnel 2906 . . . . . . 7  |-  ( -.  G  e/  _V  <->  G  e.  _V )
38 nnel 2906 . . . . . . 7  |-  ( -.  N  e/  NN0  <->  N  e.  NN0 )
3937, 38anbi12i 733 . . . . . 6  |-  ( ( -.  G  e/  _V  /\ 
-.  N  e/  NN0 ) 
<->  ( G  e.  _V  /\  N  e.  NN0 )
)
4036, 39sylbb 209 . . . . 5  |-  ( -.  ( G  e/  _V  \/  N  e/  NN0 )  ->  ( G  e.  _V  /\  N  e.  NN0 )
)
4135, 40nsyl4 156 . . . 4  |-  ( -.  ( G  e.  _V  /\  N  e.  NN0 )  ->  ( N WWalksN  G )  =  (/) )
42 0fin 8188 . . . . 5  |-  (/)  e.  Fin
4342a1i 11 . . . 4  |-  ( -.  ( G  e.  _V  /\  N  e.  NN0 )  -> 
(/)  e.  Fin )
4441, 43eqeltrd 2701 . . 3  |-  ( -.  ( G  e.  _V  /\  N  e.  NN0 )  ->  ( N WWalksN  G )  e.  Fin )
4544a1d 25 . 2  |-  ( -.  ( G  e.  _V  /\  N  e.  NN0 )  ->  ( (Vtx `  G
)  e.  Fin  ->  ( N WWalksN  G )  e.  Fin ) )
4634, 45pm2.61i 176 1  |-  ( (Vtx
`  G )  e. 
Fin  ->  ( N WWalksN  G
)  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794    e/ wnel 2897   A.wral 2912   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   {cpr 4179   ` cfv 5888  (class class class)co 6650   Fincfn 7955   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NN0cn0 11292  ..^cfzo 12465   #chash 13117  Word cword 13291  Vtxcvtx 25874  Edgcedg 25939  WWalkscwwlks 26717   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-wwlks 26722  df-wwlksn 26723
This theorem is referenced by:  wlksnfi  26802  hashwwlksnext  26809  wspthnfi  26815  wwlksnonfi  26816  rusgrnumwwlks  26869  clwwlknclwwlkdifnum  26874
  Copyright terms: Public domain W3C validator