MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnredwwlkn0 Structured version   Visualization version   Unicode version

Theorem wwlksnredwwlkn0 26791
Description: For each walk (as word) of length at least 1 there is a shorter walk (as word) starting at the same vertex. (Contributed by Alexander van der Vekens, 22-Aug-2018.) (Revised by AV, 18-Apr-2021.)
Hypothesis
Ref Expression
wwlksnredwwlkn.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
wwlksnredwwlkn0  |-  ( ( N  e.  NN0  /\  W  e.  ( ( N  +  1 ) WWalksN  G ) )  -> 
( ( W ` 
0 )  =  P  <->  E. y  e.  ( N WWalksN  G ) ( ( W substr  <. 0 ,  ( N  +  1 )
>. )  =  y  /\  ( y `  0
)  =  P  /\  { ( lastS  `  y ) ,  ( lastS  `  W ) }  e.  E ) ) )
Distinct variable groups:    y, E    y, G    y, N    y, W    y, P

Proof of Theorem wwlksnredwwlkn0
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 wwlksnredwwlkn.e . . . . 5  |-  E  =  (Edg `  G )
21wwlksnredwwlkn 26790 . . . 4  |-  ( N  e.  NN0  ->  ( W  e.  ( ( N  +  1 ) WWalksN  G
)  ->  E. y  e.  ( N WWalksN  G )
( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  { ( lastS  `  y ) ,  ( lastS  `  W ) }  e.  E ) ) )
32imp 445 . . 3  |-  ( ( N  e.  NN0  /\  W  e.  ( ( N  +  1 ) WWalksN  G ) )  ->  E. y  e.  ( N WWalksN  G ) ( ( W substr  <. 0 ,  ( N  +  1 )
>. )  =  y  /\  { ( lastS  `  y
) ,  ( lastS  `  W
) }  e.  E
) )
4 simpl 473 . . . . . . . . 9  |-  ( ( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  { ( lastS  `  y ) ,  ( lastS  `  W ) }  e.  E )  ->  ( W substr  <. 0 ,  ( N  +  1 )
>. )  =  y
)
54adantl 482 . . . . . . . 8  |-  ( ( ( ( ( W `
 0 )  =  P  /\  ( N  e.  NN0  /\  W  e.  ( ( N  + 
1 ) WWalksN  G )
) )  /\  y  e.  ( N WWalksN  G )
)  /\  ( ( W substr  <. 0 ,  ( N  +  1 )
>. )  =  y  /\  { ( lastS  `  y
) ,  ( lastS  `  W
) }  e.  E
) )  ->  ( W substr  <. 0 ,  ( N  +  1 )
>. )  =  y
)
6 fveq1 6190 . . . . . . . . . . . . . 14  |-  ( y  =  ( W substr  <. 0 ,  ( N  + 
1 ) >. )  ->  ( y `  0
)  =  ( ( W substr  <. 0 ,  ( N  +  1 )
>. ) `  0 ) )
76eqcoms 2630 . . . . . . . . . . . . 13  |-  ( ( W substr  <. 0 ,  ( N  +  1 )
>. )  =  y  ->  ( y `  0
)  =  ( ( W substr  <. 0 ,  ( N  +  1 )
>. ) `  0 ) )
87adantr 481 . . . . . . . . . . . 12  |-  ( ( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  (
( ( W ` 
0 )  =  P  /\  ( N  e. 
NN0  /\  W  e.  ( ( N  + 
1 ) WWalksN  G )
) )  /\  y  e.  ( N WWalksN  G )
) )  ->  (
y `  0 )  =  ( ( W substr  <. 0 ,  ( N  +  1 ) >.
) `  0 )
)
9 eqid 2622 . . . . . . . . . . . . . . . . . . 19  |-  (Vtx `  G )  =  (Vtx
`  G )
109, 1wwlknp 26734 . . . . . . . . . . . . . . . . . 18  |-  ( W  e.  ( ( N  +  1 ) WWalksN  G
)  ->  ( W  e. Word  (Vtx `  G )  /\  ( # `  W
)  =  ( ( N  +  1 )  +  1 )  /\  A. i  e.  ( 0..^ ( N  +  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  E ) )
11 nn0p1nn 11332 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
12 peano2nn0 11333 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
13 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  +  1 )  e.  NN0  ->  ( N  +  1 )  e.  RR )
14 lep1 10862 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  +  1 )  e.  RR  ->  ( N  +  1 )  <_  ( ( N  +  1 )  +  1 ) )
1512, 13, 143syl 18 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( N  e.  NN0  ->  ( N  +  1 )  <_ 
( ( N  + 
1 )  +  1 ) )
16 peano2nn0 11333 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  +  1 )  e.  NN0  ->  ( ( N  +  1 )  +  1 )  e. 
NN0 )
1716nn0zd 11480 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  +  1 )  e.  NN0  ->  ( ( N  +  1 )  +  1 )  e.  ZZ )
18 fznn 12408 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( N  +  1 )  +  1 )  e.  ZZ  ->  (
( N  +  1 )  e.  ( 1 ... ( ( N  +  1 )  +  1 ) )  <->  ( ( N  +  1 )  e.  NN  /\  ( N  +  1 )  <_  ( ( N  +  1 )  +  1 ) ) ) )
1912, 17, 183syl 18 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  e.  ( 1 ... ( ( N  + 
1 )  +  1 ) )  <->  ( ( N  +  1 )  e.  NN  /\  ( N  +  1 )  <_  ( ( N  +  1 )  +  1 ) ) ) )
2011, 15, 19mpbir2and 957 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ( 1 ... (
( N  +  1 )  +  1 ) ) )
21 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
# `  W )  =  ( ( N  +  1 )  +  1 )  ->  (
1 ... ( # `  W
) )  =  ( 1 ... ( ( N  +  1 )  +  1 ) ) )
2221eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
# `  W )  =  ( ( N  +  1 )  +  1 )  ->  (
( N  +  1 )  e.  ( 1 ... ( # `  W
) )  <->  ( N  +  1 )  e.  ( 1 ... (
( N  +  1 )  +  1 ) ) ) )
2320, 22syl5ibr 236 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  W )  =  ( ( N  +  1 )  +  1 )  ->  ( N  e.  NN0  ->  ( N  +  1 )  e.  ( 1 ... ( # `  W
) ) ) )
2423adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  ->  ( N  e.  NN0  ->  ( N  +  1 )  e.  ( 1 ... ( # `  W
) ) ) )
25 simpl 473 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  ->  W  e. Word  (Vtx `  G )
)
2624, 25jctild 566 . . . . . . . . . . . . . . . . . . 19  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  ->  ( N  e.  NN0  ->  ( W  e. Word  (Vtx `  G
)  /\  ( N  +  1 )  e.  ( 1 ... ( # `
 W ) ) ) ) )
27263adant3 1081 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 )  /\  A. i  e.  ( 0..^ ( N  +  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  E )  ->  ( N  e. 
NN0  ->  ( W  e. Word 
(Vtx `  G )  /\  ( N  +  1 )  e.  ( 1 ... ( # `  W
) ) ) ) )
2810, 27syl 17 . . . . . . . . . . . . . . . . 17  |-  ( W  e.  ( ( N  +  1 ) WWalksN  G
)  ->  ( N  e.  NN0  ->  ( W  e. Word  (Vtx `  G )  /\  ( N  +  1 )  e.  ( 1 ... ( # `  W
) ) ) ) )
2928impcom 446 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  W  e.  ( ( N  +  1 ) WWalksN  G ) )  -> 
( W  e. Word  (Vtx `  G )  /\  ( N  +  1 )  e.  ( 1 ... ( # `  W
) ) ) )
3029adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( W `  0
)  =  P  /\  ( N  e.  NN0  /\  W  e.  ( ( N  +  1 ) WWalksN  G ) ) )  ->  ( W  e. Word 
(Vtx `  G )  /\  ( N  +  1 )  e.  ( 1 ... ( # `  W
) ) ) )
3130adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( W ` 
0 )  =  P  /\  ( N  e. 
NN0  /\  W  e.  ( ( N  + 
1 ) WWalksN  G )
) )  /\  y  e.  ( N WWalksN  G )
)  ->  ( W  e. Word  (Vtx `  G )  /\  ( N  +  1 )  e.  ( 1 ... ( # `  W
) ) ) )
3231adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  (
( ( W ` 
0 )  =  P  /\  ( N  e. 
NN0  /\  W  e.  ( ( N  + 
1 ) WWalksN  G )
) )  /\  y  e.  ( N WWalksN  G )
) )  ->  ( W  e. Word  (Vtx `  G
)  /\  ( N  +  1 )  e.  ( 1 ... ( # `
 W ) ) ) )
33 swrd0fv0 13440 . . . . . . . . . . . . 13  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( N  +  1 )  e.  ( 1 ... ( # `  W
) ) )  -> 
( ( W substr  <. 0 ,  ( N  + 
1 ) >. ) `  0 )  =  ( W `  0
) )
3432, 33syl 17 . . . . . . . . . . . 12  |-  ( ( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  (
( ( W ` 
0 )  =  P  /\  ( N  e. 
NN0  /\  W  e.  ( ( N  + 
1 ) WWalksN  G )
) )  /\  y  e.  ( N WWalksN  G )
) )  ->  (
( W substr  <. 0 ,  ( N  +  1 ) >. ) `  0
)  =  ( W `
 0 ) )
35 simprll 802 . . . . . . . . . . . 12  |-  ( ( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  (
( ( W ` 
0 )  =  P  /\  ( N  e. 
NN0  /\  W  e.  ( ( N  + 
1 ) WWalksN  G )
) )  /\  y  e.  ( N WWalksN  G )
) )  ->  ( W `  0 )  =  P )
368, 34, 353eqtrd 2660 . . . . . . . . . . 11  |-  ( ( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  (
( ( W ` 
0 )  =  P  /\  ( N  e. 
NN0  /\  W  e.  ( ( N  + 
1 ) WWalksN  G )
) )  /\  y  e.  ( N WWalksN  G )
) )  ->  (
y `  0 )  =  P )
3736ex 450 . . . . . . . . . 10  |-  ( ( W substr  <. 0 ,  ( N  +  1 )
>. )  =  y  ->  ( ( ( ( W `  0 )  =  P  /\  ( N  e.  NN0  /\  W  e.  ( ( N  + 
1 ) WWalksN  G )
) )  /\  y  e.  ( N WWalksN  G )
)  ->  ( y `  0 )  =  P ) )
3837adantr 481 . . . . . . . . 9  |-  ( ( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  { ( lastS  `  y ) ,  ( lastS  `  W ) }  e.  E )  ->  (
( ( ( W `
 0 )  =  P  /\  ( N  e.  NN0  /\  W  e.  ( ( N  + 
1 ) WWalksN  G )
) )  /\  y  e.  ( N WWalksN  G )
)  ->  ( y `  0 )  =  P ) )
3938impcom 446 . . . . . . . 8  |-  ( ( ( ( ( W `
 0 )  =  P  /\  ( N  e.  NN0  /\  W  e.  ( ( N  + 
1 ) WWalksN  G )
) )  /\  y  e.  ( N WWalksN  G )
)  /\  ( ( W substr  <. 0 ,  ( N  +  1 )
>. )  =  y  /\  { ( lastS  `  y
) ,  ( lastS  `  W
) }  e.  E
) )  ->  (
y `  0 )  =  P )
40 simpr 477 . . . . . . . . 9  |-  ( ( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  { ( lastS  `  y ) ,  ( lastS  `  W ) }  e.  E )  ->  { ( lastS  `  y ) ,  ( lastS  `  W ) }  e.  E )
4140adantl 482 . . . . . . . 8  |-  ( ( ( ( ( W `
 0 )  =  P  /\  ( N  e.  NN0  /\  W  e.  ( ( N  + 
1 ) WWalksN  G )
) )  /\  y  e.  ( N WWalksN  G )
)  /\  ( ( W substr  <. 0 ,  ( N  +  1 )
>. )  =  y  /\  { ( lastS  `  y
) ,  ( lastS  `  W
) }  e.  E
) )  ->  { ( lastS  `  y ) ,  ( lastS  `  W ) }  e.  E )
425, 39, 413jca 1242 . . . . . . 7  |-  ( ( ( ( ( W `
 0 )  =  P  /\  ( N  e.  NN0  /\  W  e.  ( ( N  + 
1 ) WWalksN  G )
) )  /\  y  e.  ( N WWalksN  G )
)  /\  ( ( W substr  <. 0 ,  ( N  +  1 )
>. )  =  y  /\  { ( lastS  `  y
) ,  ( lastS  `  W
) }  e.  E
) )  ->  (
( W substr  <. 0 ,  ( N  +  1 ) >. )  =  y  /\  ( y ` 
0 )  =  P  /\  { ( lastS  `  y
) ,  ( lastS  `  W
) }  e.  E
) )
4342ex 450 . . . . . 6  |-  ( ( ( ( W ` 
0 )  =  P  /\  ( N  e. 
NN0  /\  W  e.  ( ( N  + 
1 ) WWalksN  G )
) )  /\  y  e.  ( N WWalksN  G )
)  ->  ( (
( W substr  <. 0 ,  ( N  +  1 ) >. )  =  y  /\  { ( lastS  `  y
) ,  ( lastS  `  W
) }  e.  E
)  ->  ( ( W substr  <. 0 ,  ( N  +  1 )
>. )  =  y  /\  ( y `  0
)  =  P  /\  { ( lastS  `  y ) ,  ( lastS  `  W ) }  e.  E ) ) )
4443reximdva 3017 . . . . 5  |-  ( ( ( W `  0
)  =  P  /\  ( N  e.  NN0  /\  W  e.  ( ( N  +  1 ) WWalksN  G ) ) )  ->  ( E. y  e.  ( N WWalksN  G )
( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  { ( lastS  `  y ) ,  ( lastS  `  W ) }  e.  E )  ->  E. y  e.  ( N WWalksN  G )
( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  (
y `  0 )  =  P  /\  { ( lastS  `  y ) ,  ( lastS  `  W ) }  e.  E ) ) )
4544ex 450 . . . 4  |-  ( ( W `  0 )  =  P  ->  (
( N  e.  NN0  /\  W  e.  ( ( N  +  1 ) WWalksN  G ) )  -> 
( E. y  e.  ( N WWalksN  G )
( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  { ( lastS  `  y ) ,  ( lastS  `  W ) }  e.  E )  ->  E. y  e.  ( N WWalksN  G )
( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  (
y `  0 )  =  P  /\  { ( lastS  `  y ) ,  ( lastS  `  W ) }  e.  E ) ) ) )
4645com13 88 . . 3  |-  ( E. y  e.  ( N WWalksN  G ) ( ( W substr  <. 0 ,  ( N  +  1 )
>. )  =  y  /\  { ( lastS  `  y
) ,  ( lastS  `  W
) }  e.  E
)  ->  ( ( N  e.  NN0  /\  W  e.  ( ( N  + 
1 ) WWalksN  G )
)  ->  ( ( W `  0 )  =  P  ->  E. y  e.  ( N WWalksN  G )
( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  (
y `  0 )  =  P  /\  { ( lastS  `  y ) ,  ( lastS  `  W ) }  e.  E ) ) ) )
473, 46mpcom 38 . 2  |-  ( ( N  e.  NN0  /\  W  e.  ( ( N  +  1 ) WWalksN  G ) )  -> 
( ( W ` 
0 )  =  P  ->  E. y  e.  ( N WWalksN  G ) ( ( W substr  <. 0 ,  ( N  +  1 )
>. )  =  y  /\  ( y `  0
)  =  P  /\  { ( lastS  `  y ) ,  ( lastS  `  W ) }  e.  E ) ) )
4829, 33syl 17 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  W  e.  ( ( N  +  1 ) WWalksN  G ) )  -> 
( ( W substr  <. 0 ,  ( N  + 
1 ) >. ) `  0 )  =  ( W `  0
) )
4948eqcomd 2628 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  W  e.  ( ( N  +  1 ) WWalksN  G ) )  -> 
( W `  0
)  =  ( ( W substr  <. 0 ,  ( N  +  1 )
>. ) `  0 ) )
5049adantl 482 . . . . . . 7  |-  ( ( ( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  (
y `  0 )  =  P )  /\  ( N  e.  NN0  /\  W  e.  ( ( N  + 
1 ) WWalksN  G )
) )  ->  ( W `  0 )  =  ( ( W substr  <. 0 ,  ( N  +  1 ) >.
) `  0 )
)
51 fveq1 6190 . . . . . . . . 9  |-  ( ( W substr  <. 0 ,  ( N  +  1 )
>. )  =  y  ->  ( ( W substr  <. 0 ,  ( N  + 
1 ) >. ) `  0 )  =  ( y `  0
) )
5251adantr 481 . . . . . . . 8  |-  ( ( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  (
y `  0 )  =  P )  ->  (
( W substr  <. 0 ,  ( N  +  1 ) >. ) `  0
)  =  ( y `
 0 ) )
5352adantr 481 . . . . . . 7  |-  ( ( ( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  (
y `  0 )  =  P )  /\  ( N  e.  NN0  /\  W  e.  ( ( N  + 
1 ) WWalksN  G )
) )  ->  (
( W substr  <. 0 ,  ( N  +  1 ) >. ) `  0
)  =  ( y `
 0 ) )
54 simpr 477 . . . . . . . 8  |-  ( ( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  (
y `  0 )  =  P )  ->  (
y `  0 )  =  P )
5554adantr 481 . . . . . . 7  |-  ( ( ( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  (
y `  0 )  =  P )  /\  ( N  e.  NN0  /\  W  e.  ( ( N  + 
1 ) WWalksN  G )
) )  ->  (
y `  0 )  =  P )
5650, 53, 553eqtrd 2660 . . . . . 6  |-  ( ( ( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  (
y `  0 )  =  P )  /\  ( N  e.  NN0  /\  W  e.  ( ( N  + 
1 ) WWalksN  G )
) )  ->  ( W `  0 )  =  P )
5756ex 450 . . . . 5  |-  ( ( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  (
y `  0 )  =  P )  ->  (
( N  e.  NN0  /\  W  e.  ( ( N  +  1 ) WWalksN  G ) )  -> 
( W `  0
)  =  P ) )
58573adant3 1081 . . . 4  |-  ( ( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  (
y `  0 )  =  P  /\  { ( lastS  `  y ) ,  ( lastS  `  W ) }  e.  E )  ->  (
( N  e.  NN0  /\  W  e.  ( ( N  +  1 ) WWalksN  G ) )  -> 
( W `  0
)  =  P ) )
5958com12 32 . . 3  |-  ( ( N  e.  NN0  /\  W  e.  ( ( N  +  1 ) WWalksN  G ) )  -> 
( ( ( W substr  <. 0 ,  ( N  +  1 ) >.
)  =  y  /\  ( y `  0
)  =  P  /\  { ( lastS  `  y ) ,  ( lastS  `  W ) }  e.  E )  ->  ( W ` 
0 )  =  P ) )
6059rexlimdvw 3034 . 2  |-  ( ( N  e.  NN0  /\  W  e.  ( ( N  +  1 ) WWalksN  G ) )  -> 
( E. y  e.  ( N WWalksN  G )
( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  y  /\  (
y `  0 )  =  P  /\  { ( lastS  `  y ) ,  ( lastS  `  W ) }  e.  E )  ->  ( W `  0 )  =  P ) )
6147, 60impbid 202 1  |-  ( ( N  e.  NN0  /\  W  e.  ( ( N  +  1 ) WWalksN  G ) )  -> 
( ( W ` 
0 )  =  P  <->  E. y  e.  ( N WWalksN  G ) ( ( W substr  <. 0 ,  ( N  +  1 )
>. )  =  y  /\  ( y `  0
)  =  P  /\  { ( lastS  `  y ) ,  ( lastS  `  W ) }  e.  E ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {cpr 4179   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    <_ cle 10075   NNcn 11020   NN0cn0 11292   ZZcz 11377   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292   substr csubstr 13295  Vtxcvtx 25874  Edgcedg 25939   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-substr 13303  df-wwlks 26722  df-wwlksn 26723
This theorem is referenced by:  rusgrnumwwlks  26869
  Copyright terms: Public domain W3C validator