Proof of Theorem ablfacrp2
| Step | Hyp | Ref
| Expression |
| 1 | | ablfacrp.2 |
. . . . . . 7
⊢ (𝜑 → (#‘𝐵) = (𝑀 · 𝑁)) |
| 2 | | ablfacrp.m |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 3 | 2 | nnnn0d 11351 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 4 | | ablfacrp.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 5 | 4 | nnnn0d 11351 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 6 | 3, 5 | nn0mulcld 11356 |
. . . . . . 7
⊢ (𝜑 → (𝑀 · 𝑁) ∈
ℕ0) |
| 7 | 1, 6 | eqeltrd 2701 |
. . . . . 6
⊢ (𝜑 → (#‘𝐵) ∈
ℕ0) |
| 8 | | ablfacrp.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
| 9 | | fvex 6201 |
. . . . . . . 8
⊢
(Base‘𝐺)
∈ V |
| 10 | 8, 9 | eqeltri 2697 |
. . . . . . 7
⊢ 𝐵 ∈ V |
| 11 | | hashclb 13149 |
. . . . . . 7
⊢ (𝐵 ∈ V → (𝐵 ∈ Fin ↔
(#‘𝐵) ∈
ℕ0)) |
| 12 | 10, 11 | ax-mp 5 |
. . . . . 6
⊢ (𝐵 ∈ Fin ↔
(#‘𝐵) ∈
ℕ0) |
| 13 | 7, 12 | sylibr 224 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 14 | | ablfacrp.k |
. . . . . 6
⊢ 𝐾 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} |
| 15 | | ssrab2 3687 |
. . . . . 6
⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} ⊆ 𝐵 |
| 16 | 14, 15 | eqsstri 3635 |
. . . . 5
⊢ 𝐾 ⊆ 𝐵 |
| 17 | | ssfi 8180 |
. . . . 5
⊢ ((𝐵 ∈ Fin ∧ 𝐾 ⊆ 𝐵) → 𝐾 ∈ Fin) |
| 18 | 13, 16, 17 | sylancl 694 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ Fin) |
| 19 | | hashcl 13147 |
. . . 4
⊢ (𝐾 ∈ Fin →
(#‘𝐾) ∈
ℕ0) |
| 20 | 18, 19 | syl 17 |
. . 3
⊢ (𝜑 → (#‘𝐾) ∈
ℕ0) |
| 21 | | ablfacrp.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Abel) |
| 22 | 2 | nnzd 11481 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 23 | | ablfacrp.o |
. . . . . . . . 9
⊢ 𝑂 = (od‘𝐺) |
| 24 | 23, 8 | oddvdssubg 18258 |
. . . . . . . 8
⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺)) |
| 25 | 21, 22, 24 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺)) |
| 26 | 14, 25 | syl5eqel 2705 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
| 27 | 8 | lagsubg 17656 |
. . . . . 6
⊢ ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (#‘𝐾) ∥ (#‘𝐵)) |
| 28 | 26, 13, 27 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → (#‘𝐾) ∥ (#‘𝐵)) |
| 29 | 2 | nncnd 11036 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 30 | 4 | nncnd 11036 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 31 | 29, 30 | mulcomd 10061 |
. . . . . 6
⊢ (𝜑 → (𝑀 · 𝑁) = (𝑁 · 𝑀)) |
| 32 | 1, 31 | eqtrd 2656 |
. . . . 5
⊢ (𝜑 → (#‘𝐵) = (𝑁 · 𝑀)) |
| 33 | 28, 32 | breqtrd 4679 |
. . . 4
⊢ (𝜑 → (#‘𝐾) ∥ (𝑁 · 𝑀)) |
| 34 | | ablfacrp.l |
. . . . 5
⊢ 𝐿 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} |
| 35 | | ablfacrp.1 |
. . . . 5
⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
| 36 | 8, 23, 14, 34, 21, 2, 4, 35, 1 | ablfacrplem 18464 |
. . . 4
⊢ (𝜑 → ((#‘𝐾) gcd 𝑁) = 1) |
| 37 | 20 | nn0zd 11480 |
. . . . 5
⊢ (𝜑 → (#‘𝐾) ∈ ℤ) |
| 38 | 4 | nnzd 11481 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 39 | | coprmdvds 15366 |
. . . . 5
⊢
(((#‘𝐾) ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑀 ∈
ℤ) → (((#‘𝐾) ∥ (𝑁 · 𝑀) ∧ ((#‘𝐾) gcd 𝑁) = 1) → (#‘𝐾) ∥ 𝑀)) |
| 40 | 37, 38, 22, 39 | syl3anc 1326 |
. . . 4
⊢ (𝜑 → (((#‘𝐾) ∥ (𝑁 · 𝑀) ∧ ((#‘𝐾) gcd 𝑁) = 1) → (#‘𝐾) ∥ 𝑀)) |
| 41 | 33, 36, 40 | mp2and 715 |
. . 3
⊢ (𝜑 → (#‘𝐾) ∥ 𝑀) |
| 42 | 23, 8 | oddvdssubg 18258 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺)) |
| 43 | 21, 38, 42 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺)) |
| 44 | 34, 43 | syl5eqel 2705 |
. . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ (SubGrp‘𝐺)) |
| 45 | 8 | lagsubg 17656 |
. . . . . . . . 9
⊢ ((𝐿 ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (#‘𝐿) ∥ (#‘𝐵)) |
| 46 | 44, 13, 45 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → (#‘𝐿) ∥ (#‘𝐵)) |
| 47 | 46, 1 | breqtrd 4679 |
. . . . . . 7
⊢ (𝜑 → (#‘𝐿) ∥ (𝑀 · 𝑁)) |
| 48 | | gcdcom 15235 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
| 49 | 22, 38, 48 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
| 50 | 49, 35 | eqtr3d 2658 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 gcd 𝑀) = 1) |
| 51 | 8, 23, 34, 14, 21, 4, 2, 50, 32 | ablfacrplem 18464 |
. . . . . . 7
⊢ (𝜑 → ((#‘𝐿) gcd 𝑀) = 1) |
| 52 | | ssrab2 3687 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ⊆ 𝐵 |
| 53 | 34, 52 | eqsstri 3635 |
. . . . . . . . . . 11
⊢ 𝐿 ⊆ 𝐵 |
| 54 | | ssfi 8180 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ Fin ∧ 𝐿 ⊆ 𝐵) → 𝐿 ∈ Fin) |
| 55 | 13, 53, 54 | sylancl 694 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ Fin) |
| 56 | | hashcl 13147 |
. . . . . . . . . 10
⊢ (𝐿 ∈ Fin →
(#‘𝐿) ∈
ℕ0) |
| 57 | 55, 56 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (#‘𝐿) ∈
ℕ0) |
| 58 | 57 | nn0zd 11480 |
. . . . . . . 8
⊢ (𝜑 → (#‘𝐿) ∈ ℤ) |
| 59 | | coprmdvds 15366 |
. . . . . . . 8
⊢
(((#‘𝐿) ∈
ℤ ∧ 𝑀 ∈
ℤ ∧ 𝑁 ∈
ℤ) → (((#‘𝐿) ∥ (𝑀 · 𝑁) ∧ ((#‘𝐿) gcd 𝑀) = 1) → (#‘𝐿) ∥ 𝑁)) |
| 60 | 58, 22, 38, 59 | syl3anc 1326 |
. . . . . . 7
⊢ (𝜑 → (((#‘𝐿) ∥ (𝑀 · 𝑁) ∧ ((#‘𝐿) gcd 𝑀) = 1) → (#‘𝐿) ∥ 𝑁)) |
| 61 | 47, 51, 60 | mp2and 715 |
. . . . . 6
⊢ (𝜑 → (#‘𝐿) ∥ 𝑁) |
| 62 | | dvdscmul 15008 |
. . . . . . 7
⊢
(((#‘𝐿) ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑀 ∈
ℤ) → ((#‘𝐿) ∥ 𝑁 → (𝑀 · (#‘𝐿)) ∥ (𝑀 · 𝑁))) |
| 63 | 58, 38, 22, 62 | syl3anc 1326 |
. . . . . 6
⊢ (𝜑 → ((#‘𝐿) ∥ 𝑁 → (𝑀 · (#‘𝐿)) ∥ (𝑀 · 𝑁))) |
| 64 | 61, 63 | mpd 15 |
. . . . 5
⊢ (𝜑 → (𝑀 · (#‘𝐿)) ∥ (𝑀 · 𝑁)) |
| 65 | | eqid 2622 |
. . . . . . . . . 10
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 66 | | eqid 2622 |
. . . . . . . . . 10
⊢
(LSSum‘𝐺) =
(LSSum‘𝐺) |
| 67 | 8, 23, 14, 34, 21, 2, 4, 35, 1,
65, 66 | ablfacrp 18465 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐾 ∩ 𝐿) = {(0g‘𝐺)} ∧ (𝐾(LSSum‘𝐺)𝐿) = 𝐵)) |
| 68 | 67 | simprd 479 |
. . . . . . . 8
⊢ (𝜑 → (𝐾(LSSum‘𝐺)𝐿) = 𝐵) |
| 69 | 68 | fveq2d 6195 |
. . . . . . 7
⊢ (𝜑 → (#‘(𝐾(LSSum‘𝐺)𝐿)) = (#‘𝐵)) |
| 70 | | eqid 2622 |
. . . . . . . 8
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
| 71 | 67 | simpld 475 |
. . . . . . . 8
⊢ (𝜑 → (𝐾 ∩ 𝐿) = {(0g‘𝐺)}) |
| 72 | 70, 21, 26, 44 | ablcntzd 18260 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ⊆ ((Cntz‘𝐺)‘𝐿)) |
| 73 | 66, 65, 70, 26, 44, 71, 72, 18, 55 | lsmhash 18118 |
. . . . . . 7
⊢ (𝜑 → (#‘(𝐾(LSSum‘𝐺)𝐿)) = ((#‘𝐾) · (#‘𝐿))) |
| 74 | 69, 73 | eqtr3d 2658 |
. . . . . 6
⊢ (𝜑 → (#‘𝐵) = ((#‘𝐾) · (#‘𝐿))) |
| 75 | 74, 1 | eqtr3d 2658 |
. . . . 5
⊢ (𝜑 → ((#‘𝐾) · (#‘𝐿)) = (𝑀 · 𝑁)) |
| 76 | 64, 75 | breqtrrd 4681 |
. . . 4
⊢ (𝜑 → (𝑀 · (#‘𝐿)) ∥ ((#‘𝐾) · (#‘𝐿))) |
| 77 | 65 | subg0cl 17602 |
. . . . . . . 8
⊢ (𝐿 ∈ (SubGrp‘𝐺) →
(0g‘𝐺)
∈ 𝐿) |
| 78 | | ne0i 3921 |
. . . . . . . 8
⊢
((0g‘𝐺) ∈ 𝐿 → 𝐿 ≠ ∅) |
| 79 | 44, 77, 78 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝐿 ≠ ∅) |
| 80 | | hashnncl 13157 |
. . . . . . . 8
⊢ (𝐿 ∈ Fin →
((#‘𝐿) ∈ ℕ
↔ 𝐿 ≠
∅)) |
| 81 | 55, 80 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((#‘𝐿) ∈ ℕ ↔ 𝐿 ≠ ∅)) |
| 82 | 79, 81 | mpbird 247 |
. . . . . 6
⊢ (𝜑 → (#‘𝐿) ∈ ℕ) |
| 83 | 82 | nnne0d 11065 |
. . . . 5
⊢ (𝜑 → (#‘𝐿) ≠ 0) |
| 84 | | dvdsmulcr 15011 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧
(#‘𝐾) ∈ ℤ
∧ ((#‘𝐿) ∈
ℤ ∧ (#‘𝐿)
≠ 0)) → ((𝑀
· (#‘𝐿))
∥ ((#‘𝐾)
· (#‘𝐿))
↔ 𝑀 ∥
(#‘𝐾))) |
| 85 | 22, 37, 58, 83, 84 | syl112anc 1330 |
. . . 4
⊢ (𝜑 → ((𝑀 · (#‘𝐿)) ∥ ((#‘𝐾) · (#‘𝐿)) ↔ 𝑀 ∥ (#‘𝐾))) |
| 86 | 76, 85 | mpbid 222 |
. . 3
⊢ (𝜑 → 𝑀 ∥ (#‘𝐾)) |
| 87 | | dvdseq 15036 |
. . 3
⊢
((((#‘𝐾)
∈ ℕ0 ∧ 𝑀 ∈ ℕ0) ∧
((#‘𝐾) ∥ 𝑀 ∧ 𝑀 ∥ (#‘𝐾))) → (#‘𝐾) = 𝑀) |
| 88 | 20, 3, 41, 86, 87 | syl22anc 1327 |
. 2
⊢ (𝜑 → (#‘𝐾) = 𝑀) |
| 89 | | dvdsmulc 15009 |
. . . . . . 7
⊢
(((#‘𝐾) ∈
ℤ ∧ 𝑀 ∈
ℤ ∧ 𝑁 ∈
ℤ) → ((#‘𝐾) ∥ 𝑀 → ((#‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁))) |
| 90 | 37, 22, 38, 89 | syl3anc 1326 |
. . . . . 6
⊢ (𝜑 → ((#‘𝐾) ∥ 𝑀 → ((#‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁))) |
| 91 | 41, 90 | mpd 15 |
. . . . 5
⊢ (𝜑 → ((#‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁)) |
| 92 | 91, 75 | breqtrrd 4681 |
. . . 4
⊢ (𝜑 → ((#‘𝐾) · 𝑁) ∥ ((#‘𝐾) · (#‘𝐿))) |
| 93 | 88, 2 | eqeltrd 2701 |
. . . . . 6
⊢ (𝜑 → (#‘𝐾) ∈ ℕ) |
| 94 | 93 | nnne0d 11065 |
. . . . 5
⊢ (𝜑 → (#‘𝐾) ≠ 0) |
| 95 | | dvdscmulr 15010 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧
(#‘𝐿) ∈ ℤ
∧ ((#‘𝐾) ∈
ℤ ∧ (#‘𝐾)
≠ 0)) → (((#‘𝐾) · 𝑁) ∥ ((#‘𝐾) · (#‘𝐿)) ↔ 𝑁 ∥ (#‘𝐿))) |
| 96 | 38, 58, 37, 94, 95 | syl112anc 1330 |
. . . 4
⊢ (𝜑 → (((#‘𝐾) · 𝑁) ∥ ((#‘𝐾) · (#‘𝐿)) ↔ 𝑁 ∥ (#‘𝐿))) |
| 97 | 92, 96 | mpbid 222 |
. . 3
⊢ (𝜑 → 𝑁 ∥ (#‘𝐿)) |
| 98 | | dvdseq 15036 |
. . 3
⊢
((((#‘𝐿)
∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧
((#‘𝐿) ∥ 𝑁 ∧ 𝑁 ∥ (#‘𝐿))) → (#‘𝐿) = 𝑁) |
| 99 | 57, 5, 61, 97, 98 | syl22anc 1327 |
. 2
⊢ (𝜑 → (#‘𝐿) = 𝑁) |
| 100 | 88, 99 | jca 554 |
1
⊢ (𝜑 → ((#‘𝐾) = 𝑀 ∧ (#‘𝐿) = 𝑁)) |