MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1lem Structured version   Visualization version   Unicode version

Theorem ablfac1lem 18467
Description: Lemma for ablfac1b 18469. Satisfy the assumptions of ablfacrp. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b  |-  B  =  ( Base `  G
)
ablfac1.o  |-  O  =  ( od `  G
)
ablfac1.s  |-  S  =  ( p  e.  A  |->  { x  e.  B  |  ( O `  x )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) } )
ablfac1.g  |-  ( ph  ->  G  e.  Abel )
ablfac1.f  |-  ( ph  ->  B  e.  Fin )
ablfac1.1  |-  ( ph  ->  A  C_  Prime )
ablfac1.m  |-  M  =  ( P ^ ( P  pCnt  ( # `  B
) ) )
ablfac1.n  |-  N  =  ( ( # `  B
)  /  M )
Assertion
Ref Expression
ablfac1lem  |-  ( (
ph  /\  P  e.  A )  ->  (
( M  e.  NN  /\  N  e.  NN )  /\  ( M  gcd  N )  =  1  /\  ( # `  B
)  =  ( M  x.  N ) ) )
Distinct variable groups:    x, p, B    ph, p, x    A, p, x    O, p, x    P, p, x    G, p, x
Allowed substitution hints:    S( x, p)    M( x, p)    N( x, p)

Proof of Theorem ablfac1lem
StepHypRef Expression
1 ablfac1.m . . . 4  |-  M  =  ( P ^ ( P  pCnt  ( # `  B
) ) )
2 ablfac1.1 . . . . . . 7  |-  ( ph  ->  A  C_  Prime )
32sselda 3603 . . . . . 6  |-  ( (
ph  /\  P  e.  A )  ->  P  e.  Prime )
4 prmnn 15388 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
53, 4syl 17 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  P  e.  NN )
6 ablfac1.g . . . . . . . . 9  |-  ( ph  ->  G  e.  Abel )
7 ablgrp 18198 . . . . . . . . 9  |-  ( G  e.  Abel  ->  G  e. 
Grp )
8 ablfac1.b . . . . . . . . . 10  |-  B  =  ( Base `  G
)
98grpbn0 17451 . . . . . . . . 9  |-  ( G  e.  Grp  ->  B  =/=  (/) )
106, 7, 93syl 18 . . . . . . . 8  |-  ( ph  ->  B  =/=  (/) )
11 ablfac1.f . . . . . . . . 9  |-  ( ph  ->  B  e.  Fin )
12 hashnncl 13157 . . . . . . . . 9  |-  ( B  e.  Fin  ->  (
( # `  B )  e.  NN  <->  B  =/=  (/) ) )
1311, 12syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( # `  B
)  e.  NN  <->  B  =/=  (/) ) )
1410, 13mpbird 247 . . . . . . 7  |-  ( ph  ->  ( # `  B
)  e.  NN )
1514adantr 481 . . . . . 6  |-  ( (
ph  /\  P  e.  A )  ->  ( # `
 B )  e.  NN )
163, 15pccld 15555 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  ( P  pCnt  ( # `  B
) )  e.  NN0 )
175, 16nnexpcld 13030 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  ( P ^ ( P  pCnt  (
# `  B )
) )  e.  NN )
181, 17syl5eqel 2705 . . 3  |-  ( (
ph  /\  P  e.  A )  ->  M  e.  NN )
19 ablfac1.n . . . 4  |-  N  =  ( ( # `  B
)  /  M )
20 pcdvds 15568 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( # `
 B )  e.  NN )  ->  ( P ^ ( P  pCnt  (
# `  B )
) )  ||  ( # `
 B ) )
213, 15, 20syl2anc 693 . . . . . 6  |-  ( (
ph  /\  P  e.  A )  ->  ( P ^ ( P  pCnt  (
# `  B )
) )  ||  ( # `
 B ) )
221, 21syl5eqbr 4688 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  M  ||  ( # `  B
) )
23 nndivdvds 14989 . . . . . 6  |-  ( ( ( # `  B
)  e.  NN  /\  M  e.  NN )  ->  ( M  ||  ( # `
 B )  <->  ( ( # `
 B )  /  M )  e.  NN ) )
2415, 18, 23syl2anc 693 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  ( M  ||  ( # `  B
)  <->  ( ( # `  B )  /  M
)  e.  NN ) )
2522, 24mpbid 222 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  (
( # `  B )  /  M )  e.  NN )
2619, 25syl5eqel 2705 . . 3  |-  ( (
ph  /\  P  e.  A )  ->  N  e.  NN )
2718, 26jca 554 . 2  |-  ( (
ph  /\  P  e.  A )  ->  ( M  e.  NN  /\  N  e.  NN ) )
281oveq1i 6660 . . 3  |-  ( M  gcd  N )  =  ( ( P ^
( P  pCnt  ( # `
 B ) ) )  gcd  N )
29 pcndvds2 15572 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( # `
 B )  e.  NN )  ->  -.  P  ||  ( ( # `  B )  /  ( P ^ ( P  pCnt  (
# `  B )
) ) ) )
303, 15, 29syl2anc 693 . . . . . 6  |-  ( (
ph  /\  P  e.  A )  ->  -.  P  ||  ( ( # `  B )  /  ( P ^ ( P  pCnt  (
# `  B )
) ) ) )
311oveq2i 6661 . . . . . . . 8  |-  ( (
# `  B )  /  M )  =  ( ( # `  B
)  /  ( P ^ ( P  pCnt  (
# `  B )
) ) )
3219, 31eqtri 2644 . . . . . . 7  |-  N  =  ( ( # `  B
)  /  ( P ^ ( P  pCnt  (
# `  B )
) ) )
3332breq2i 4661 . . . . . 6  |-  ( P 
||  N  <->  P  ||  (
( # `  B )  /  ( P ^
( P  pCnt  ( # `
 B ) ) ) ) )
3430, 33sylnibr 319 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  -.  P  ||  N )
3526nnzd 11481 . . . . . 6  |-  ( (
ph  /\  P  e.  A )  ->  N  e.  ZZ )
36 coprm 15423 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  <->  ( P  gcd  N )  =  1 ) )
373, 35, 36syl2anc 693 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  ( -.  P  ||  N  <->  ( P  gcd  N )  =  1 ) )
3834, 37mpbid 222 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  ( P  gcd  N )  =  1 )
39 prmz 15389 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ZZ )
403, 39syl 17 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  P  e.  ZZ )
41 rpexp1i 15433 . . . . 5  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ  /\  ( P  pCnt  ( # `  B
) )  e.  NN0 )  ->  ( ( P  gcd  N )  =  1  ->  ( ( P ^ ( P  pCnt  (
# `  B )
) )  gcd  N
)  =  1 ) )
4240, 35, 16, 41syl3anc 1326 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  (
( P  gcd  N
)  =  1  -> 
( ( P ^
( P  pCnt  ( # `
 B ) ) )  gcd  N )  =  1 ) )
4338, 42mpd 15 . . 3  |-  ( (
ph  /\  P  e.  A )  ->  (
( P ^ ( P  pCnt  ( # `  B
) ) )  gcd 
N )  =  1 )
4428, 43syl5eq 2668 . 2  |-  ( (
ph  /\  P  e.  A )  ->  ( M  gcd  N )  =  1 )
4519oveq2i 6661 . . 3  |-  ( M  x.  N )  =  ( M  x.  (
( # `  B )  /  M ) )
4615nncnd 11036 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  ( # `
 B )  e.  CC )
4718nncnd 11036 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  M  e.  CC )
4818nnne0d 11065 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  M  =/=  0 )
4946, 47, 48divcan2d 10803 . . 3  |-  ( (
ph  /\  P  e.  A )  ->  ( M  x.  ( ( # `
 B )  /  M ) )  =  ( # `  B
) )
5045, 49syl5req 2669 . 2  |-  ( (
ph  /\  P  e.  A )  ->  ( # `
 B )  =  ( M  x.  N
) )
5127, 44, 503jca 1242 1  |-  ( (
ph  /\  P  e.  A )  ->  (
( M  e.  NN  /\  N  e.  NN )  /\  ( M  gcd  N )  =  1  /\  ( # `  B
)  =  ( M  x.  N ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   Fincfn 7955   1c1 9937    x. cmul 9941    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ^cexp 12860   #chash 13117    || cdvds 14983    gcd cgcd 15216   Primecprime 15385    pCnt cpc 15541   Basecbs 15857   Grpcgrp 17422   odcod 17944   Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-abl 18196
This theorem is referenced by:  ablfac1a  18468  ablfac1b  18469
  Copyright terms: Public domain W3C validator