MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinneg Structured version   Visualization version   GIF version

Theorem asinneg 24613
Description: The arcsine function is odd. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
asinneg (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴))

Proof of Theorem asinneg
StepHypRef Expression
1 ax-icn 9995 . . . . . . . . . 10 i ∈ ℂ
2 mulcl 10020 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 706 . . . . . . . . 9 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 ax-1cn 9994 . . . . . . . . . . 11 1 ∈ ℂ
5 sqcl 12925 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
6 subcl 10280 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
74, 5, 6sylancr 695 . . . . . . . . . 10 (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ)
87sqrtcld 14176 . . . . . . . . 9 (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ)
93, 8addcld 10059 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ)
10 asinlem 24595 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0)
119, 10logcld 24317 . . . . . . 7 (𝐴 ∈ ℂ → (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ)
12 efneg 14828 . . . . . . 7 ((log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ → (exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = (1 / (exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
1311, 12syl 17 . . . . . 6 (𝐴 ∈ ℂ → (exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = (1 / (exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
14 eflog 24323 . . . . . . . 8 ((((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ ∧ ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0) → (exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
159, 10, 14syl2anc 693 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
1615oveq2d 6666 . . . . . 6 (𝐴 ∈ ℂ → (1 / (exp‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) = (1 / ((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
17 asinlem2 24596 . . . . . . 7 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)
184a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → 1 ∈ ℂ)
19 negcl 10281 . . . . . . . . . 10 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
20 mulcl 10020 . . . . . . . . . 10 ((i ∈ ℂ ∧ -𝐴 ∈ ℂ) → (i · -𝐴) ∈ ℂ)
211, 19, 20sylancr 695 . . . . . . . . 9 (𝐴 ∈ ℂ → (i · -𝐴) ∈ ℂ)
2219sqcld 13006 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-𝐴↑2) ∈ ℂ)
23 subcl 10280 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (-𝐴↑2) ∈ ℂ) → (1 − (-𝐴↑2)) ∈ ℂ)
244, 22, 23sylancr 695 . . . . . . . . . 10 (𝐴 ∈ ℂ → (1 − (-𝐴↑2)) ∈ ℂ)
2524sqrtcld 14176 . . . . . . . . 9 (𝐴 ∈ ℂ → (√‘(1 − (-𝐴↑2))) ∈ ℂ)
2621, 25addcld 10059 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ∈ ℂ)
2718, 9, 26, 10divmuld 10823 . . . . . . 7 (𝐴 ∈ ℂ → ((1 / ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ↔ (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1))
2817, 27mpbird 247 . . . . . 6 (𝐴 ∈ ℂ → (1 / ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))
2913, 16, 283eqtrd 2660 . . . . 5 (𝐴 ∈ ℂ → (exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))
30 asinlem 24595 . . . . . . 7 (-𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0)
3119, 30syl 17 . . . . . 6 (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0)
3211negcld 10379 . . . . . . . 8 (𝐴 ∈ ℂ → -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ)
3311imnegd 13950 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℑ‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
3411imcld 13935 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ)
3534renegcld 10457 . . . . . . . . . 10 (𝐴 ∈ ℂ → -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ)
369renegd 13949 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = -(ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
37 asinlem3 24598 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
389recld 13934 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℝ)
3938le0neg2d 10600 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ↔ -(ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤ 0))
4037, 39mpbid 222 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → -(ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤ 0)
4136, 40eqbrtrd 4675 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤ 0)
429negcld 10379 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → -((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ)
4342recld 13934 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℝ)
44 0re 10040 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
45 lenlt 10116 . . . . . . . . . . . . . . . 16 (((ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤ 0 ↔ ¬ 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
4643, 44, 45sylancl 694 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ≤ 0 ↔ ¬ 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
4741, 46mpbid 222 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ¬ 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
48 lognegb 24336 . . . . . . . . . . . . . . . . 17 ((((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ ∧ ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0) → (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ ↔ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = π))
499, 10, 48syl2anc 693 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ ↔ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = π))
50 rpgt0 11844 . . . . . . . . . . . . . . . . 17 (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ → 0 < -((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
51 rpre 11839 . . . . . . . . . . . . . . . . . 18 (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ → -((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ)
5251rered 13964 . . . . . . . . . . . . . . . . 17 (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ → (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = -((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
5350, 52breqtrrd 4681 . . . . . . . . . . . . . . . 16 (-((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℝ+ → 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
5449, 53syl6bir 244 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = π → 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
5554necon3bd 2808 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (¬ 0 < (ℜ‘-((i · 𝐴) + (√‘(1 − (𝐴↑2))))) → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≠ π))
5647, 55mpd 15 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≠ π)
5756necomd 2849 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → π ≠ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
58 pire 24210 . . . . . . . . . . . . . 14 π ∈ ℝ
5958a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → π ∈ ℝ)
609, 10logimcld 24318 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (-π < (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∧ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π))
6160simprd 479 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π)
6234, 59, 61leltned 10190 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) < π ↔ π ≠ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
6357, 62mpbird 247 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) < π)
64 ltneg 10528 . . . . . . . . . . . 12 (((ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) < π ↔ -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
6534, 58, 64sylancl 694 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) < π ↔ -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
6663, 65mpbid 222 . . . . . . . . . 10 (𝐴 ∈ ℂ → -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
6760simpld 475 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → -π < (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
6858renegcli 10342 . . . . . . . . . . . . 13 -π ∈ ℝ
69 ltle 10126 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ) → (-π < (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) → -π ≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
7068, 34, 69sylancr 695 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (-π < (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) → -π ≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))))
7167, 70mpd 15 . . . . . . . . . . 11 (𝐴 ∈ ℂ → -π ≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
72 lenegcon1 10532 . . . . . . . . . . . 12 ((π ∈ ℝ ∧ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ) → (-π ≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ↔ -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π))
7358, 34, 72sylancr 695 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-π ≤ (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ↔ -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π))
7471, 73mpbid 222 . . . . . . . . . 10 (𝐴 ∈ ℂ → -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π)
7568rexri 10097 . . . . . . . . . . 11 -π ∈ ℝ*
76 elioc2 12236 . . . . . . . . . . 11 ((-π ∈ ℝ* ∧ π ∈ ℝ) → (-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π) ↔ (-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ ∧ -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∧ -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π)))
7775, 58, 76mp2an 708 . . . . . . . . . 10 (-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π) ↔ (-(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ ℝ ∧ -π < -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∧ -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ≤ π))
7835, 66, 74, 77syl3anbrc 1246 . . . . . . . . 9 (𝐴 ∈ ℂ → -(ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π))
7933, 78eqeltrd 2701 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π))
80 imf 13853 . . . . . . . . 9 ℑ:ℂ⟶ℝ
81 ffn 6045 . . . . . . . . 9 (ℑ:ℂ⟶ℝ → ℑ Fn ℂ)
82 elpreima 6337 . . . . . . . . 9 (ℑ Fn ℂ → (-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ (ℑ “ (-π(,]π)) ↔ (-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ ∧ (ℑ‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π))))
8380, 81, 82mp2b 10 . . . . . . . 8 (-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ (ℑ “ (-π(,]π)) ↔ (-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ ∧ (ℑ‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-π(,]π)))
8432, 79, 83sylanbrc 698 . . . . . . 7 (𝐴 ∈ ℂ → -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ (ℑ “ (-π(,]π)))
85 logrn 24305 . . . . . . 7 ran log = (ℑ “ (-π(,]π))
8684, 85syl6eleqr 2712 . . . . . 6 (𝐴 ∈ ℂ → -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ran log)
87 logeftb 24330 . . . . . 6 ((((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ∈ ℂ ∧ ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0 ∧ -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ran log) → ((log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ↔ (exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
8826, 31, 86, 87syl3anc 1326 . . . . 5 (𝐴 ∈ ℂ → ((log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ↔ (exp‘-(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
8929, 88mpbird 247 . . . 4 (𝐴 ∈ ℂ → (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
9089oveq2d 6666 . . 3 (𝐴 ∈ ℂ → (-i · (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))) = (-i · -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
91 negicn 10282 . . . 4 -i ∈ ℂ
92 mulneg2 10467 . . . 4 ((-i ∈ ℂ ∧ (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ) → (-i · -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = -(-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
9391, 11, 92sylancr 695 . . 3 (𝐴 ∈ ℂ → (-i · -(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = -(-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
9490, 93eqtrd 2656 . 2 (𝐴 ∈ ℂ → (-i · (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))) = -(-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
95 asinval 24609 . . 3 (-𝐴 ∈ ℂ → (arcsin‘-𝐴) = (-i · (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
9619, 95syl 17 . 2 (𝐴 ∈ ℂ → (arcsin‘-𝐴) = (-i · (log‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
97 asinval 24609 . . 3 (𝐴 ∈ ℂ → (arcsin‘𝐴) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
9897negeqd 10275 . 2 (𝐴 ∈ ℂ → -(arcsin‘𝐴) = -(-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
9994, 96, 983eqtr4d 2666 1 (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  ccnv 5113  ran crn 5115  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937  ici 9938   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  2c2 11070  +crp 11832  (,]cioc 12176  cexp 12860  cre 13837  cim 13838  csqrt 13973  expce 14792  πcpi 14797  logclog 24301  arcsincasin 24589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-asin 24592
This theorem is referenced by:  acosneg  24614  sinasin  24616  reasinsin  24623  cosasin  24631  areacirc  33505
  Copyright terms: Public domain W3C validator