MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinlem3 Structured version   Visualization version   Unicode version

Theorem asinlem3 24598
Description: The argument to the logarithm in df-asin 24592 has nonnegative real part. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
asinlem3  |-  ( A  e.  CC  ->  0  <_  ( Re `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) )

Proof of Theorem asinlem3
StepHypRef Expression
1 0red 10041 . 2  |-  ( A  e.  CC  ->  0  e.  RR )
2 imcl 13851 . 2  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
3 ax-icn 9995 . . . . . . . . 9  |-  _i  e.  CC
4 negcl 10281 . . . . . . . . . 10  |-  ( A  e.  CC  ->  -u A  e.  CC )
54adantr 481 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  ->  -u A  e.  CC )
6 mulcl 10020 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  -u A  e.  CC )  ->  ( _i  x.  -u A )  e.  CC )
73, 5, 6sylancr 695 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( _i  x.  -u A
)  e.  CC )
8 ax-1cn 9994 . . . . . . . . . 10  |-  1  e.  CC
95sqcld 13006 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( -u A ^ 2 )  e.  CC )
10 subcl 10280 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  ( -u A ^ 2 )  e.  CC )  ->  ( 1  -  ( -u A ^
2 ) )  e.  CC )
118, 9, 10sylancr 695 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( 1  -  ( -u A ^ 2 ) )  e.  CC )
1211sqrtcld 14176 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( sqr `  (
1  -  ( -u A ^ 2 ) ) )  e.  CC )
137, 12addcld 10059 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( ( _i  x.  -u A )  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) )  e.  CC )
14 asinlem 24595 . . . . . . . 8  |-  ( -u A  e.  CC  ->  ( ( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) )  =/=  0 )
155, 14syl 17 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( ( _i  x.  -u A )  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) )  =/=  0
)
1613, 15absrpcld 14187 . . . . . 6  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( abs `  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) )  e.  RR+ )
17 2z 11409 . . . . . 6  |-  2  e.  ZZ
18 rpexpcl 12879 . . . . . 6  |-  ( ( ( abs `  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) )  e.  RR+  /\  2  e.  ZZ )  ->  (
( abs `  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ^ 2 )  e.  RR+ )
1916, 17, 18sylancl 694 . . . . 5  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( ( abs `  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ^ 2 )  e.  RR+ )
2019rprecred 11883 . . . 4  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( 1  /  (
( abs `  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ^ 2 ) )  e.  RR )
2113cjcld 13936 . . . . 5  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( * `  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) )  e.  CC )
2221recld 13934 . . . 4  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( Re `  (
* `  ( (
_i  x.  -u A )  +  ( sqr `  (
1  -  ( -u A ^ 2 ) ) ) ) ) )  e.  RR )
2319rpreccld 11882 . . . . 5  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( 1  /  (
( abs `  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ^ 2 ) )  e.  RR+ )
2423rpge0d 11876 . . . 4  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
0  <_  ( 1  /  ( ( abs `  ( ( _i  x.  -u A )  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ^
2 ) ) )
25 imneg 13873 . . . . . . . 8  |-  ( A  e.  CC  ->  (
Im `  -u A )  =  -u ( Im `  A ) )
2625adantr 481 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( Im `  -u A
)  =  -u (
Im `  A )
)
272le0neg2d 10600 . . . . . . . 8  |-  ( A  e.  CC  ->  (
0  <_  ( Im `  A )  <->  -u ( Im
`  A )  <_ 
0 ) )
2827biimpa 501 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  ->  -u ( Im `  A
)  <_  0 )
2926, 28eqbrtrd 4675 . . . . . 6  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( Im `  -u A
)  <_  0 )
30 asinlem3a 24597 . . . . . 6  |-  ( (
-u A  e.  CC  /\  ( Im `  -u A
)  <_  0 )  ->  0  <_  (
Re `  ( (
_i  x.  -u A )  +  ( sqr `  (
1  -  ( -u A ^ 2 ) ) ) ) ) )
315, 29, 30syl2anc 693 . . . . 5  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
0  <_  ( Re `  ( ( _i  x.  -u A )  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) )
3213recjd 13944 . . . . 5  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( Re `  (
* `  ( (
_i  x.  -u A )  +  ( sqr `  (
1  -  ( -u A ^ 2 ) ) ) ) ) )  =  ( Re `  ( ( _i  x.  -u A )  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) )
3331, 32breqtrrd 4681 . . . 4  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
0  <_  ( Re `  ( * `  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ) )
3420, 22, 24, 33mulge0d 10604 . . 3  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
0  <_  ( (
1  /  ( ( abs `  ( ( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ^ 2 ) )  x.  ( Re `  ( * `  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ) ) )
35 recval 14062 . . . . . . 7  |-  ( ( ( ( _i  x.  -u A )  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) )  e.  CC  /\  ( ( _i  x.  -u A )  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) )  =/=  0
)  ->  ( 1  /  ( ( _i  x.  -u A )  +  ( sqr `  (
1  -  ( -u A ^ 2 ) ) ) ) )  =  ( ( * `  ( ( _i  x.  -u A )  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) )  / 
( ( abs `  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ^ 2 ) ) )
3613, 15, 35syl2anc 693 . . . . . 6  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( 1  /  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) )  =  ( ( * `
 ( ( _i  x.  -u A )  +  ( sqr `  (
1  -  ( -u A ^ 2 ) ) ) ) )  / 
( ( abs `  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ^ 2 ) ) )
37 asinlem2 24596 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) )  x.  ( ( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) )  =  1 )
3837adantr 481 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) )  x.  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) )  =  1 )
3938eqcomd 2628 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
1  =  ( ( ( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) )  x.  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) )
40 1cnd 10056 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
1  e.  CC )
41 simpl 473 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  ->  A  e.  CC )
42 mulcl 10020 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
433, 41, 42sylancr 695 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( _i  x.  A
)  e.  CC )
44 sqcl 12925 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
4544adantr 481 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( A ^ 2 )  e.  CC )
46 subcl 10280 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  ( A ^ 2 )  e.  CC )  -> 
( 1  -  ( A ^ 2 ) )  e.  CC )
478, 45, 46sylancr 695 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( 1  -  ( A ^ 2 ) )  e.  CC )
4847sqrtcld 14176 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( sqr `  (
1  -  ( A ^ 2 ) ) )  e.  CC )
4943, 48addcld 10059 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) )  e.  CC )
5040, 49, 13, 15divmul3d 10835 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( ( 1  / 
( ( _i  x.  -u A )  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) )  =  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) )  <->  1  =  ( ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) )  x.  ( ( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ) )
5139, 50mpbird 247 . . . . . 6  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( 1  /  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) )  =  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )
5219rpcnd 11874 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( ( abs `  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ^ 2 )  e.  CC )
5319rpne0d 11877 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( ( abs `  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ^ 2 )  =/=  0 )
5421, 52, 53divrec2d 10805 . . . . . 6  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( ( * `  ( ( _i  x.  -u A )  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) )  / 
( ( abs `  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ^ 2 ) )  =  ( ( 1  /  ( ( abs `  ( ( _i  x.  -u A )  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ^
2 ) )  x.  ( * `  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ) )
5536, 51, 543eqtr3d 2664 . . . . 5  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) )  =  ( ( 1  /  ( ( abs `  ( ( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ^ 2 ) )  x.  ( * `  ( ( _i  x.  -u A )  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ) )
5655fveq2d 6195 . . . 4  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( Re `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) )  =  ( Re `  (
( 1  /  (
( abs `  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ^ 2 ) )  x.  ( * `  ( ( _i  x.  -u A )  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ) ) )
5720, 21remul2d 13967 . . . 4  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( Re `  (
( 1  /  (
( abs `  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ^ 2 ) )  x.  ( * `  ( ( _i  x.  -u A )  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ) )  =  ( ( 1  /  ( ( abs `  ( ( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ^ 2 ) )  x.  ( Re `  ( * `  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ) ) )
5856, 57eqtrd 2656 . . 3  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
( Re `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) )  =  ( ( 1  / 
( ( abs `  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ^ 2 ) )  x.  ( Re `  ( * `  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) ) ) ) )
5934, 58breqtrrd 4681 . 2  |-  ( ( A  e.  CC  /\  0  <_  ( Im `  A ) )  -> 
0  <_  ( Re `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )
60 asinlem3a 24597 . 2  |-  ( ( A  e.  CC  /\  ( Im `  A )  <_  0 )  -> 
0  <_  ( Re `  ( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) ) )
611, 2, 59, 60lecasei 10143 1  |-  ( A  e.  CC  ->  0  <_  ( Re `  (
( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937   _ici 9938    + caddc 9939    x. cmul 9941    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   2c2 11070   ZZcz 11377   RR+crp 11832   ^cexp 12860   *ccj 13836   Recre 13837   Imcim 13838   sqrcsqrt 13973   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  asinneg  24613  asinbnd  24626  dvasin  33496
  Copyright terms: Public domain W3C validator