MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znunit Structured version   Visualization version   GIF version

Theorem znunit 19912
Description: The units of ℤ/n are the integers coprime to the base. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
znchr.y 𝑌 = (ℤ/nℤ‘𝑁)
znunit.u 𝑈 = (Unit‘𝑌)
znunit.l 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
znunit ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) ∈ 𝑈 ↔ (𝐴 gcd 𝑁) = 1))

Proof of Theorem znunit
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znchr.y . . . . 5 𝑌 = (ℤ/nℤ‘𝑁)
21zncrng 19893 . . . 4 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
32adantr 481 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝑌 ∈ CRing)
4 znunit.u . . . 4 𝑈 = (Unit‘𝑌)
5 eqid 2622 . . . 4 (1r𝑌) = (1r𝑌)
6 eqid 2622 . . . 4 (∥r𝑌) = (∥r𝑌)
74, 5, 6crngunit 18662 . . 3 (𝑌 ∈ CRing → ((𝐿𝐴) ∈ 𝑈 ↔ (𝐿𝐴)(∥r𝑌)(1r𝑌)))
83, 7syl 17 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) ∈ 𝑈 ↔ (𝐿𝐴)(∥r𝑌)(1r𝑌)))
9 eqid 2622 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
10 znunit.l . . . . . . 7 𝐿 = (ℤRHom‘𝑌)
111, 9, 10znzrhfo 19896 . . . . . 6 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑌))
1211adantr 481 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐿:ℤ–onto→(Base‘𝑌))
13 fof 6115 . . . . 5 (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
1412, 13syl 17 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐿:ℤ⟶(Base‘𝑌))
15 ffvelrn 6357 . . . 4 ((𝐿:ℤ⟶(Base‘𝑌) ∧ 𝐴 ∈ ℤ) → (𝐿𝐴) ∈ (Base‘𝑌))
1614, 15sylancom 701 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝐿𝐴) ∈ (Base‘𝑌))
17 eqid 2622 . . . 4 (.r𝑌) = (.r𝑌)
189, 6, 17dvdsr2 18647 . . 3 ((𝐿𝐴) ∈ (Base‘𝑌) → ((𝐿𝐴)(∥r𝑌)(1r𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
1916, 18syl 17 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴)(∥r𝑌)(1r𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
20 forn 6118 . . . . . 6 (𝐿:ℤ–onto→(Base‘𝑌) → ran 𝐿 = (Base‘𝑌))
2112, 20syl 17 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ran 𝐿 = (Base‘𝑌))
2221rexeqdv 3145 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑥 ∈ ran 𝐿(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
23 ffn 6045 . . . . 5 (𝐿:ℤ⟶(Base‘𝑌) → 𝐿 Fn ℤ)
24 oveq1 6657 . . . . . . 7 (𝑥 = (𝐿𝑛) → (𝑥(.r𝑌)(𝐿𝐴)) = ((𝐿𝑛)(.r𝑌)(𝐿𝐴)))
2524eqeq1d 2624 . . . . . 6 (𝑥 = (𝐿𝑛) → ((𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
2625rexrn 6361 . . . . 5 (𝐿 Fn ℤ → (∃𝑥 ∈ ran 𝐿(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
2714, 23, 263syl 18 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑥 ∈ ran 𝐿(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
2822, 27bitr3d 270 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
29 crngring 18558 . . . . . . . . . 10 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
303, 29syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝑌 ∈ Ring)
3110zrhrhm 19860 . . . . . . . . 9 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
3230, 31syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐿 ∈ (ℤring RingHom 𝑌))
3332adantr 481 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝐿 ∈ (ℤring RingHom 𝑌))
34 simpr 477 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
35 simplr 792 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝐴 ∈ ℤ)
36 zringbas 19824 . . . . . . . 8 ℤ = (Base‘ℤring)
37 zringmulr 19827 . . . . . . . 8 · = (.r‘ℤring)
3836, 37, 17rhmmul 18727 . . . . . . 7 ((𝐿 ∈ (ℤring RingHom 𝑌) ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐿‘(𝑛 · 𝐴)) = ((𝐿𝑛)(.r𝑌)(𝐿𝐴)))
3933, 34, 35, 38syl3anc 1326 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐿‘(𝑛 · 𝐴)) = ((𝐿𝑛)(.r𝑌)(𝐿𝐴)))
4030adantr 481 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑌 ∈ Ring)
4110, 5zrh1 19861 . . . . . . 7 (𝑌 ∈ Ring → (𝐿‘1) = (1r𝑌))
4240, 41syl 17 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐿‘1) = (1r𝑌))
4339, 42eqeq12d 2637 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
44 simpll 790 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑁 ∈ ℕ0)
4534, 35zmulcld 11488 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝐴) ∈ ℤ)
46 1zzd 11408 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 1 ∈ ℤ)
471, 10zndvds 19898 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑛 · 𝐴) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
4844, 45, 46, 47syl3anc 1326 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
4943, 48bitr3d 270 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
5049rexbidva 3049 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑛 ∈ ℤ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
51 simplr 792 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝐴 ∈ ℤ)
52 nn0z 11400 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
5352ad2antrr 762 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑁 ∈ ℤ)
54 gcddvds 15225 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 gcd 𝑁) ∥ 𝐴 ∧ (𝐴 gcd 𝑁) ∥ 𝑁))
5551, 53, 54syl2anc 693 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 𝐴 ∧ (𝐴 gcd 𝑁) ∥ 𝑁))
5655simpld 475 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 𝐴)
5751, 53gcdcld 15230 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∈ ℕ0)
5857nn0zd 11480 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∈ ℤ)
5934adantrr 753 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑛 ∈ ℤ)
60 dvdsmultr2 15021 . . . . . . . . 9 (((𝐴 gcd 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝑁) ∥ 𝐴 → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴)))
6158, 59, 51, 60syl3anc 1326 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 𝐴 → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴)))
6256, 61mpd 15 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴))
6345adantrr 753 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝑛 · 𝐴) ∈ ℤ)
64 1zzd 11408 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 1 ∈ ℤ)
6555simprd 479 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 𝑁)
66 simprr 796 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑁 ∥ ((𝑛 · 𝐴) − 1))
67 peano2zm 11420 . . . . . . . . . . 11 ((𝑛 · 𝐴) ∈ ℤ → ((𝑛 · 𝐴) − 1) ∈ ℤ)
6863, 67syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝑛 · 𝐴) − 1) ∈ ℤ)
69 dvdstr 15018 . . . . . . . . . 10 (((𝐴 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝑛 · 𝐴) − 1) ∈ ℤ) → (((𝐴 gcd 𝑁) ∥ 𝑁𝑁 ∥ ((𝑛 · 𝐴) − 1)) → (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1)))
7058, 53, 68, 69syl3anc 1326 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (((𝐴 gcd 𝑁) ∥ 𝑁𝑁 ∥ ((𝑛 · 𝐴) − 1)) → (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1)))
7165, 66, 70mp2and 715 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1))
72 dvdssub2 15023 . . . . . . . 8 ((((𝐴 gcd 𝑁) ∈ ℤ ∧ (𝑛 · 𝐴) ∈ ℤ ∧ 1 ∈ ℤ) ∧ (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1)) → ((𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴) ↔ (𝐴 gcd 𝑁) ∥ 1))
7358, 63, 64, 71, 72syl31anc 1329 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴) ↔ (𝐴 gcd 𝑁) ∥ 1))
7462, 73mpbid 222 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 1)
75 dvds1 15041 . . . . . . 7 ((𝐴 gcd 𝑁) ∈ ℕ0 → ((𝐴 gcd 𝑁) ∥ 1 ↔ (𝐴 gcd 𝑁) = 1))
7657, 75syl 17 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 1 ↔ (𝐴 gcd 𝑁) = 1))
7774, 76mpbid 222 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) = 1)
7877rexlimdvaa 3032 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1) → (𝐴 gcd 𝑁) = 1))
79 simpr 477 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐴 ∈ ℤ)
8052adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝑁 ∈ ℤ)
81 bezout 15260 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)))
8279, 80, 81syl2anc 693 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)))
83 eqeq1 2626 . . . . . . 7 ((𝐴 gcd 𝑁) = 1 → ((𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) ↔ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
84832rexbidv 3057 . . . . . 6 ((𝐴 gcd 𝑁) = 1 → (∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) ↔ ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
8582, 84syl5ibcom 235 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐴 gcd 𝑁) = 1 → ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
8652ad3antrrr 766 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℤ)
87 dvdsmul1 15003 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑚))
8886, 87sylancom 701 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑚))
89 zmulcl 11426 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑁 · 𝑚) ∈ ℤ)
9086, 89sylancom 701 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝑁 · 𝑚) ∈ ℤ)
91 dvdsnegb 14999 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁 · 𝑚) ∈ ℤ) → (𝑁 ∥ (𝑁 · 𝑚) ↔ 𝑁 ∥ -(𝑁 · 𝑚)))
9286, 90, 91syl2anc 693 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝑁 ∥ (𝑁 · 𝑚) ↔ 𝑁 ∥ -(𝑁 · 𝑚)))
9388, 92mpbid 222 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ -(𝑁 · 𝑚))
9435adantr 481 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝐴 ∈ ℤ)
9594zcnd 11483 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝐴 ∈ ℂ)
96 zcn 11382 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
9796ad2antlr 763 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑛 ∈ ℂ)
9895, 97mulcomd 10061 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝐴 · 𝑛) = (𝑛 · 𝐴))
9998oveq1d 6665 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝐴 · 𝑛) + (𝑁 · 𝑚)) = ((𝑛 · 𝐴) + (𝑁 · 𝑚)))
10097, 95mulcld 10060 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝑛 · 𝐴) ∈ ℂ)
10190zcnd 11483 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝑁 · 𝑚) ∈ ℂ)
102100, 101subnegd 10399 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝑛 · 𝐴) − -(𝑁 · 𝑚)) = ((𝑛 · 𝐴) + (𝑁 · 𝑚)))
10399, 102eqtr4d 2659 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝐴 · 𝑛) + (𝑁 · 𝑚)) = ((𝑛 · 𝐴) − -(𝑁 · 𝑚)))
104103oveq2d 6666 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))) = ((𝑛 · 𝐴) − ((𝑛 · 𝐴) − -(𝑁 · 𝑚))))
105101negcld 10379 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → -(𝑁 · 𝑚) ∈ ℂ)
106100, 105nncand 10397 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝑛 · 𝐴) − ((𝑛 · 𝐴) − -(𝑁 · 𝑚))) = -(𝑁 · 𝑚))
107104, 106eqtrd 2656 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))) = -(𝑁 · 𝑚))
10893, 107breqtrrd 4681 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
109 oveq2 6658 . . . . . . . . 9 (1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → ((𝑛 · 𝐴) − 1) = ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
110109breq2d 4665 . . . . . . . 8 (1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → (𝑁 ∥ ((𝑛 · 𝐴) − 1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚)))))
111108, 110syl5ibrcom 237 . . . . . . 7 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
112111rexlimdva 3031 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
113112reximdva 3017 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
11485, 113syld 47 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐴 gcd 𝑁) = 1 → ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
11578, 114impbid 202 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1) ↔ (𝐴 gcd 𝑁) = 1))
11628, 50, 1153bitrd 294 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ (𝐴 gcd 𝑁) = 1))
1178, 19, 1163bitrd 294 1 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) ∈ 𝑈 ↔ (𝐴 gcd 𝑁) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913   class class class wbr 4653  ran crn 5115   Fn wfn 5883  wf 5884  ontowfo 5886  cfv 5888  (class class class)co 6650  cc 9934  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266  -cneg 10267  0cn0 11292  cz 11377  cdvds 14983   gcd cgcd 15216  Basecbs 15857  .rcmulr 15942  1rcur 18501  Ringcrg 18547  CRingccrg 18548  rcdsr 18638  Unitcui 18639   RingHom crh 18712  ringzring 19818  ℤRHomczrh 19848  ℤ/nczn 19851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855
This theorem is referenced by:  znunithash  19913  znrrg  19914  dchrelbas4  24968  lgsdchr  25080  rpvmasumlem  25176  dirith  25218
  Copyright terms: Public domain W3C validator