Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  breprexp Structured version   Visualization version   GIF version

Theorem breprexp 30711
Description: Express the 𝑆 th power of the finite series in terms of the number of representations of integers 𝑚 as sums of 𝑆 terms. This is a general formulation which allows logarithmic weighting of the sums (see https://mathoverflow.net/questions/253246) and a mix of different smoothing functions taken into account in 𝐿. See breprexpnat 30712 for the simple case presented in the proposition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 6-Dec-2021.)
Hypotheses
Ref Expression
breprexp.n (𝜑𝑁 ∈ ℕ0)
breprexp.s (𝜑𝑆 ∈ ℕ0)
breprexp.z (𝜑𝑍 ∈ ℂ)
breprexp.h (𝜑𝐿:(0..^𝑆)⟶(ℂ ↑𝑚 ℕ))
Assertion
Ref Expression
breprexp (𝜑 → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
Distinct variable groups:   𝑁,𝑐,𝑚   𝑆,𝑎,𝑐,𝑚   𝑍,𝑐,𝑚,𝑏   𝜑,𝑐   𝐿,𝑐,𝑚,𝑎,𝑏   𝑁,𝑎,𝑏   𝑆,𝑏   𝑍,𝑎,𝑏   𝜑,𝑎,𝑏,𝑚

Proof of Theorem breprexp
Dummy variables 𝑠 𝑡 𝑖 𝑗 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breprexp.s . 2 (𝜑𝑆 ∈ ℕ0)
2 nn0ssre 11296 . . . . . 6 0 ⊆ ℝ
32a1i 11 . . . . 5 (𝜑 → ℕ0 ⊆ ℝ)
43sselda 3603 . . . 4 ((𝜑𝑆 ∈ ℕ0) → 𝑆 ∈ ℝ)
5 leid 10133 . . . 4 (𝑆 ∈ ℝ → 𝑆𝑆)
64, 5syl 17 . . 3 ((𝜑𝑆 ∈ ℕ0) → 𝑆𝑆)
7 breq1 4656 . . . . 5 (𝑡 = 0 → (𝑡𝑆 ↔ 0 ≤ 𝑆))
8 oveq2 6658 . . . . . . 7 (𝑡 = 0 → (0..^𝑡) = (0..^0))
98prodeq1d 14651 . . . . . 6 (𝑡 = 0 → ∏𝑎 ∈ (0..^𝑡𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = ∏𝑎 ∈ (0..^0)Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)))
10 oveq1 6657 . . . . . . . 8 (𝑡 = 0 → (𝑡 · 𝑁) = (0 · 𝑁))
1110oveq2d 6666 . . . . . . 7 (𝑡 = 0 → (0...(𝑡 · 𝑁)) = (0...(0 · 𝑁)))
12 fveq2 6191 . . . . . . . . . 10 (𝑡 = 0 → (repr‘𝑡) = (repr‘0))
1312oveqd 6667 . . . . . . . . 9 (𝑡 = 0 → ((1...𝑁)(repr‘𝑡)𝑚) = ((1...𝑁)(repr‘0)𝑚))
148prodeq1d 14651 . . . . . . . . . . 11 (𝑡 = 0 → ∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) = ∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)))
1514oveq1d 6665 . . . . . . . . . 10 (𝑡 = 0 → (∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = (∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
1615adantr 481 . . . . . . . . 9 ((𝑡 = 0 ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)) → (∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = (∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
1713, 16sumeq12dv 14437 . . . . . . . 8 (𝑡 = 0 → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)(∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑐 ∈ ((1...𝑁)(repr‘0)𝑚)(∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
1817adantr 481 . . . . . . 7 ((𝑡 = 0 ∧ 𝑚 ∈ (0...(𝑡 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)(∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑐 ∈ ((1...𝑁)(repr‘0)𝑚)(∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
1911, 18sumeq12dv 14437 . . . . . 6 (𝑡 = 0 → Σ𝑚 ∈ (0...(𝑡 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)(∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑚 ∈ (0...(0 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘0)𝑚)(∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
209, 19eqeq12d 2637 . . . . 5 (𝑡 = 0 → (∏𝑎 ∈ (0..^𝑡𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑡 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)(∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) ↔ ∏𝑎 ∈ (0..^0)Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(0 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘0)𝑚)(∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚))))
217, 20imbi12d 334 . . . 4 (𝑡 = 0 → ((𝑡𝑆 → ∏𝑎 ∈ (0..^𝑡𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑡 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)(∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚))) ↔ (0 ≤ 𝑆 → ∏𝑎 ∈ (0..^0)Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(0 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘0)𝑚)(∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))))
22 breq1 4656 . . . . 5 (𝑡 = 𝑠 → (𝑡𝑆𝑠𝑆))
23 oveq2 6658 . . . . . . 7 (𝑡 = 𝑠 → (0..^𝑡) = (0..^𝑠))
2423prodeq1d 14651 . . . . . 6 (𝑡 = 𝑠 → ∏𝑎 ∈ (0..^𝑡𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = ∏𝑎 ∈ (0..^𝑠𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)))
25 oveq1 6657 . . . . . . . 8 (𝑡 = 𝑠 → (𝑡 · 𝑁) = (𝑠 · 𝑁))
2625oveq2d 6666 . . . . . . 7 (𝑡 = 𝑠 → (0...(𝑡 · 𝑁)) = (0...(𝑠 · 𝑁)))
27 fveq2 6191 . . . . . . . . . 10 (𝑡 = 𝑠 → (repr‘𝑡) = (repr‘𝑠))
2827oveqd 6667 . . . . . . . . 9 (𝑡 = 𝑠 → ((1...𝑁)(repr‘𝑡)𝑚) = ((1...𝑁)(repr‘𝑠)𝑚))
2923prodeq1d 14651 . . . . . . . . . . 11 (𝑡 = 𝑠 → ∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) = ∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)))
3029oveq1d 6665 . . . . . . . . . 10 (𝑡 = 𝑠 → (∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = (∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
3130adantr 481 . . . . . . . . 9 ((𝑡 = 𝑠𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)) → (∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = (∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
3228, 31sumeq12dv 14437 . . . . . . . 8 (𝑡 = 𝑠 → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)(∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑚)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
3332adantr 481 . . . . . . 7 ((𝑡 = 𝑠𝑚 ∈ (0...(𝑡 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)(∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑚)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
3426, 33sumeq12dv 14437 . . . . . 6 (𝑡 = 𝑠 → Σ𝑚 ∈ (0...(𝑡 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)(∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑚 ∈ (0...(𝑠 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑚)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
3524, 34eqeq12d 2637 . . . . 5 (𝑡 = 𝑠 → (∏𝑎 ∈ (0..^𝑡𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑡 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)(∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) ↔ ∏𝑎 ∈ (0..^𝑠𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑠 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑚)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚))))
3622, 35imbi12d 334 . . . 4 (𝑡 = 𝑠 → ((𝑡𝑆 → ∏𝑎 ∈ (0..^𝑡𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑡 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)(∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚))) ↔ (𝑠𝑆 → ∏𝑎 ∈ (0..^𝑠𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑠 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑚)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))))
37 breq1 4656 . . . . 5 (𝑡 = (𝑠 + 1) → (𝑡𝑆 ↔ (𝑠 + 1) ≤ 𝑆))
38 oveq2 6658 . . . . . . 7 (𝑡 = (𝑠 + 1) → (0..^𝑡) = (0..^(𝑠 + 1)))
3938prodeq1d 14651 . . . . . 6 (𝑡 = (𝑠 + 1) → ∏𝑎 ∈ (0..^𝑡𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = ∏𝑎 ∈ (0..^(𝑠 + 1))Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)))
40 oveq1 6657 . . . . . . . 8 (𝑡 = (𝑠 + 1) → (𝑡 · 𝑁) = ((𝑠 + 1) · 𝑁))
4140oveq2d 6666 . . . . . . 7 (𝑡 = (𝑠 + 1) → (0...(𝑡 · 𝑁)) = (0...((𝑠 + 1) · 𝑁)))
42 fveq2 6191 . . . . . . . . . 10 (𝑡 = (𝑠 + 1) → (repr‘𝑡) = (repr‘(𝑠 + 1)))
4342oveqd 6667 . . . . . . . . 9 (𝑡 = (𝑠 + 1) → ((1...𝑁)(repr‘𝑡)𝑚) = ((1...𝑁)(repr‘(𝑠 + 1))𝑚))
4438prodeq1d 14651 . . . . . . . . . . 11 (𝑡 = (𝑠 + 1) → ∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) = ∏𝑎 ∈ (0..^(𝑠 + 1))((𝐿𝑎)‘(𝑐𝑎)))
4544oveq1d 6665 . . . . . . . . . 10 (𝑡 = (𝑠 + 1) → (∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = (∏𝑎 ∈ (0..^(𝑠 + 1))((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
4645adantr 481 . . . . . . . . 9 ((𝑡 = (𝑠 + 1) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)) → (∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = (∏𝑎 ∈ (0..^(𝑠 + 1))((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
4743, 46sumeq12dv 14437 . . . . . . . 8 (𝑡 = (𝑠 + 1) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)(∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑐 ∈ ((1...𝑁)(repr‘(𝑠 + 1))𝑚)(∏𝑎 ∈ (0..^(𝑠 + 1))((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
4847adantr 481 . . . . . . 7 ((𝑡 = (𝑠 + 1) ∧ 𝑚 ∈ (0...(𝑡 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)(∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑐 ∈ ((1...𝑁)(repr‘(𝑠 + 1))𝑚)(∏𝑎 ∈ (0..^(𝑠 + 1))((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
4941, 48sumeq12dv 14437 . . . . . 6 (𝑡 = (𝑠 + 1) → Σ𝑚 ∈ (0...(𝑡 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)(∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑚 ∈ (0...((𝑠 + 1) · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘(𝑠 + 1))𝑚)(∏𝑎 ∈ (0..^(𝑠 + 1))((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
5039, 49eqeq12d 2637 . . . . 5 (𝑡 = (𝑠 + 1) → (∏𝑎 ∈ (0..^𝑡𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑡 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)(∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) ↔ ∏𝑎 ∈ (0..^(𝑠 + 1))Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...((𝑠 + 1) · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘(𝑠 + 1))𝑚)(∏𝑎 ∈ (0..^(𝑠 + 1))((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚))))
5137, 50imbi12d 334 . . . 4 (𝑡 = (𝑠 + 1) → ((𝑡𝑆 → ∏𝑎 ∈ (0..^𝑡𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑡 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)(∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚))) ↔ ((𝑠 + 1) ≤ 𝑆 → ∏𝑎 ∈ (0..^(𝑠 + 1))Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...((𝑠 + 1) · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘(𝑠 + 1))𝑚)(∏𝑎 ∈ (0..^(𝑠 + 1))((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))))
52 breq1 4656 . . . . 5 (𝑡 = 𝑆 → (𝑡𝑆𝑆𝑆))
53 oveq2 6658 . . . . . . 7 (𝑡 = 𝑆 → (0..^𝑡) = (0..^𝑆))
5453prodeq1d 14651 . . . . . 6 (𝑡 = 𝑆 → ∏𝑎 ∈ (0..^𝑡𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)))
55 oveq1 6657 . . . . . . . 8 (𝑡 = 𝑆 → (𝑡 · 𝑁) = (𝑆 · 𝑁))
5655oveq2d 6666 . . . . . . 7 (𝑡 = 𝑆 → (0...(𝑡 · 𝑁)) = (0...(𝑆 · 𝑁)))
57 fveq2 6191 . . . . . . . . . 10 (𝑡 = 𝑆 → (repr‘𝑡) = (repr‘𝑆))
5857oveqd 6667 . . . . . . . . 9 (𝑡 = 𝑆 → ((1...𝑁)(repr‘𝑡)𝑚) = ((1...𝑁)(repr‘𝑆)𝑚))
5953prodeq1d 14651 . . . . . . . . . . 11 (𝑡 = 𝑆 → ∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) = ∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)))
6059oveq1d 6665 . . . . . . . . . 10 (𝑡 = 𝑆 → (∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
6160adantr 481 . . . . . . . . 9 ((𝑡 = 𝑆𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)) → (∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
6258, 61sumeq12dv 14437 . . . . . . . 8 (𝑡 = 𝑆 → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)(∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
6362adantr 481 . . . . . . 7 ((𝑡 = 𝑆𝑚 ∈ (0...(𝑡 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)(∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
6456, 63sumeq12dv 14437 . . . . . 6 (𝑡 = 𝑆 → Σ𝑚 ∈ (0...(𝑡 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)(∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
6554, 64eqeq12d 2637 . . . . 5 (𝑡 = 𝑆 → (∏𝑎 ∈ (0..^𝑡𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑡 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)(∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) ↔ ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚))))
6652, 65imbi12d 334 . . . 4 (𝑡 = 𝑆 → ((𝑡𝑆 → ∏𝑎 ∈ (0..^𝑡𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑡 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑡)𝑚)(∏𝑎 ∈ (0..^𝑡)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚))) ↔ (𝑆𝑆 → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))))
67 0nn0 11307 . . . . . . . 8 0 ∈ ℕ0
68 fz1ssnn 12372 . . . . . . . . . . . . 13 (1...𝑁) ⊆ ℕ
6968a1i 11 . . . . . . . . . . . 12 (𝜑 → (1...𝑁) ⊆ ℕ)
70 0zd 11389 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℤ)
71 breprexp.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
7269, 70, 71repr0 30689 . . . . . . . . . . 11 (𝜑 → ((1...𝑁)(repr‘0)0) = if(0 = 0, {∅}, ∅))
73 eqid 2622 . . . . . . . . . . . 12 0 = 0
7473iftruei 4093 . . . . . . . . . . 11 if(0 = 0, {∅}, ∅) = {∅}
7572, 74syl6eq 2672 . . . . . . . . . 10 (𝜑 → ((1...𝑁)(repr‘0)0) = {∅})
76 snfi 8038 . . . . . . . . . 10 {∅} ∈ Fin
7775, 76syl6eqel 2709 . . . . . . . . 9 (𝜑 → ((1...𝑁)(repr‘0)0) ∈ Fin)
78 fzo0 12492 . . . . . . . . . . . . . . . 16 (0..^0) = ∅
7978prodeq1i 14648 . . . . . . . . . . . . . . 15 𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) = ∏𝑎 ∈ ∅ ((𝐿𝑎)‘(𝑐𝑎))
80 prod0 14673 . . . . . . . . . . . . . . 15 𝑎 ∈ ∅ ((𝐿𝑎)‘(𝑐𝑎)) = 1
8179, 80eqtri 2644 . . . . . . . . . . . . . 14 𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) = 1
8281a1i 11 . . . . . . . . . . . . 13 (𝜑 → ∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) = 1)
83 breprexp.z . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ ℂ)
84 exp0 12864 . . . . . . . . . . . . . 14 (𝑍 ∈ ℂ → (𝑍↑0) = 1)
8583, 84syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑍↑0) = 1)
8682, 85oveq12d 6668 . . . . . . . . . . . 12 (𝜑 → (∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍↑0)) = (1 · 1))
87 ax-1cn 9994 . . . . . . . . . . . . 13 1 ∈ ℂ
8887mulid1i 10042 . . . . . . . . . . . 12 (1 · 1) = 1
8986, 88syl6eq 2672 . . . . . . . . . . 11 (𝜑 → (∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍↑0)) = 1)
9089, 87syl6eqel 2709 . . . . . . . . . 10 (𝜑 → (∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍↑0)) ∈ ℂ)
9190adantr 481 . . . . . . . . 9 ((𝜑𝑐 ∈ ((1...𝑁)(repr‘0)0)) → (∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍↑0)) ∈ ℂ)
9277, 91fsumcl 14464 . . . . . . . 8 (𝜑 → Σ𝑐 ∈ ((1...𝑁)(repr‘0)0)(∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍↑0)) ∈ ℂ)
93 oveq2 6658 . . . . . . . . . 10 (𝑚 = 0 → ((1...𝑁)(repr‘0)𝑚) = ((1...𝑁)(repr‘0)0))
94 simpl 473 . . . . . . . . . . . 12 ((𝑚 = 0 ∧ 𝑐 ∈ ((1...𝑁)(repr‘0)𝑚)) → 𝑚 = 0)
9594oveq2d 6666 . . . . . . . . . . 11 ((𝑚 = 0 ∧ 𝑐 ∈ ((1...𝑁)(repr‘0)𝑚)) → (𝑍𝑚) = (𝑍↑0))
9695oveq2d 6666 . . . . . . . . . 10 ((𝑚 = 0 ∧ 𝑐 ∈ ((1...𝑁)(repr‘0)𝑚)) → (∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = (∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍↑0)))
9793, 96sumeq12dv 14437 . . . . . . . . 9 (𝑚 = 0 → Σ𝑐 ∈ ((1...𝑁)(repr‘0)𝑚)(∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑐 ∈ ((1...𝑁)(repr‘0)0)(∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍↑0)))
9897sumsn 14475 . . . . . . . 8 ((0 ∈ ℕ0 ∧ Σ𝑐 ∈ ((1...𝑁)(repr‘0)0)(∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍↑0)) ∈ ℂ) → Σ𝑚 ∈ {0}Σ𝑐 ∈ ((1...𝑁)(repr‘0)𝑚)(∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑐 ∈ ((1...𝑁)(repr‘0)0)(∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍↑0)))
9967, 92, 98sylancr 695 . . . . . . 7 (𝜑 → Σ𝑚 ∈ {0}Σ𝑐 ∈ ((1...𝑁)(repr‘0)𝑚)(∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑐 ∈ ((1...𝑁)(repr‘0)0)(∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍↑0)))
10075sumeq1d 14431 . . . . . . 7 (𝜑 → Σ𝑐 ∈ ((1...𝑁)(repr‘0)0)(∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍↑0)) = Σ𝑐 ∈ {∅} (∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍↑0)))
101 0ex 4790 . . . . . . . . 9 ∅ ∈ V
10278prodeq1i 14648 . . . . . . . . . . . . 13 𝑎 ∈ (0..^0)((𝐿𝑎)‘(∅‘𝑎)) = ∏𝑎 ∈ ∅ ((𝐿𝑎)‘(∅‘𝑎))
103 prod0 14673 . . . . . . . . . . . . 13 𝑎 ∈ ∅ ((𝐿𝑎)‘(∅‘𝑎)) = 1
104102, 103eqtri 2644 . . . . . . . . . . . 12 𝑎 ∈ (0..^0)((𝐿𝑎)‘(∅‘𝑎)) = 1
105104a1i 11 . . . . . . . . . . 11 (𝜑 → ∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(∅‘𝑎)) = 1)
106105, 87syl6eqel 2709 . . . . . . . . . 10 (𝜑 → ∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(∅‘𝑎)) ∈ ℂ)
10785, 87syl6eqel 2709 . . . . . . . . . 10 (𝜑 → (𝑍↑0) ∈ ℂ)
108106, 107mulcld 10060 . . . . . . . . 9 (𝜑 → (∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(∅‘𝑎)) · (𝑍↑0)) ∈ ℂ)
109 fveq1 6190 . . . . . . . . . . . . . 14 (𝑐 = ∅ → (𝑐𝑎) = (∅‘𝑎))
110109fveq2d 6195 . . . . . . . . . . . . 13 (𝑐 = ∅ → ((𝐿𝑎)‘(𝑐𝑎)) = ((𝐿𝑎)‘(∅‘𝑎)))
111110ralrimivw 2967 . . . . . . . . . . . 12 (𝑐 = ∅ → ∀𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) = ((𝐿𝑎)‘(∅‘𝑎)))
112111prodeq2d 14652 . . . . . . . . . . 11 (𝑐 = ∅ → ∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) = ∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(∅‘𝑎)))
113112oveq1d 6665 . . . . . . . . . 10 (𝑐 = ∅ → (∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍↑0)) = (∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(∅‘𝑎)) · (𝑍↑0)))
114113sumsn 14475 . . . . . . . . 9 ((∅ ∈ V ∧ (∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(∅‘𝑎)) · (𝑍↑0)) ∈ ℂ) → Σ𝑐 ∈ {∅} (∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍↑0)) = (∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(∅‘𝑎)) · (𝑍↑0)))
115101, 108, 114sylancr 695 . . . . . . . 8 (𝜑 → Σ𝑐 ∈ {∅} (∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍↑0)) = (∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(∅‘𝑎)) · (𝑍↑0)))
116105, 85oveq12d 6668 . . . . . . . . 9 (𝜑 → (∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(∅‘𝑎)) · (𝑍↑0)) = (1 · 1))
117116, 86, 893eqtr2d 2662 . . . . . . . 8 (𝜑 → (∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(∅‘𝑎)) · (𝑍↑0)) = 1)
118115, 117eqtrd 2656 . . . . . . 7 (𝜑 → Σ𝑐 ∈ {∅} (∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍↑0)) = 1)
11999, 100, 1183eqtrd 2660 . . . . . 6 (𝜑 → Σ𝑚 ∈ {0}Σ𝑐 ∈ ((1...𝑁)(repr‘0)𝑚)(∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = 1)
12071nn0cnd 11353 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
121120mul02d 10234 . . . . . . . . 9 (𝜑 → (0 · 𝑁) = 0)
122121oveq2d 6666 . . . . . . . 8 (𝜑 → (0...(0 · 𝑁)) = (0...0))
123 fz0sn 12439 . . . . . . . 8 (0...0) = {0}
124122, 123syl6eq 2672 . . . . . . 7 (𝜑 → (0...(0 · 𝑁)) = {0})
125124sumeq1d 14431 . . . . . 6 (𝜑 → Σ𝑚 ∈ (0...(0 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘0)𝑚)(∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑚 ∈ {0}Σ𝑐 ∈ ((1...𝑁)(repr‘0)𝑚)(∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
12678prodeq1i 14648 . . . . . . . 8 𝑎 ∈ (0..^0)Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = ∏𝑎 ∈ ∅ Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏))
127 prod0 14673 . . . . . . . 8 𝑎 ∈ ∅ Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = 1
128126, 127eqtri 2644 . . . . . . 7 𝑎 ∈ (0..^0)Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = 1
129128a1i 11 . . . . . 6 (𝜑 → ∏𝑎 ∈ (0..^0)Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = 1)
130119, 125, 1293eqtr4rd 2667 . . . . 5 (𝜑 → ∏𝑎 ∈ (0..^0)Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(0 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘0)𝑚)(∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
131130a1d 25 . . . 4 (𝜑 → (0 ≤ 𝑆 → ∏𝑎 ∈ (0..^0)Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(0 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘0)𝑚)(∏𝑎 ∈ (0..^0)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚))))
132 simpll 790 . . . . . 6 ((((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑎 ∈ (0..^𝑠𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑠 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑚)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))) ∧ (𝑠 + 1) ≤ 𝑆) → (𝜑𝑠 ∈ ℕ0))
133 simplr 792 . . . . . . 7 ((((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑎 ∈ (0..^𝑠𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑠 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑚)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))) ∧ (𝑠 + 1) ≤ 𝑆) → (𝑠𝑆 → ∏𝑎 ∈ (0..^𝑠𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑠 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑚)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚))))
134 oveq2 6658 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((1...𝑁)(repr‘𝑠)𝑚) = ((1...𝑁)(repr‘𝑠)𝑛))
135 oveq2 6658 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑍𝑚) = (𝑍𝑛))
136135oveq2d 6666 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = (∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑛)))
137136adantr 481 . . . . . . . . . . . 12 ((𝑚 = 𝑛𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑚)) → (∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = (∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑛)))
138134, 137sumeq12dv 14437 . . . . . . . . . . 11 (𝑚 = 𝑛 → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑚)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑛)))
139138cbvsumv 14426 . . . . . . . . . 10 Σ𝑚 ∈ (0...(𝑠 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑚)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑛))
140139eqeq2i 2634 . . . . . . . . 9 (∏𝑎 ∈ (0..^𝑠𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑠 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑚)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) ↔ ∏𝑎 ∈ (0..^𝑠𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑛)))
141 simpl 473 . . . . . . . . . . . . . . . 16 ((𝑎 = 𝑖𝑏 ∈ (1...𝑁)) → 𝑎 = 𝑖)
142141fveq2d 6195 . . . . . . . . . . . . . . 15 ((𝑎 = 𝑖𝑏 ∈ (1...𝑁)) → (𝐿𝑎) = (𝐿𝑖))
143142fveq1d 6193 . . . . . . . . . . . . . 14 ((𝑎 = 𝑖𝑏 ∈ (1...𝑁)) → ((𝐿𝑎)‘𝑏) = ((𝐿𝑖)‘𝑏))
144143oveq1d 6665 . . . . . . . . . . . . 13 ((𝑎 = 𝑖𝑏 ∈ (1...𝑁)) → (((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = (((𝐿𝑖)‘𝑏) · (𝑍𝑏)))
145144sumeq2dv 14433 . . . . . . . . . . . 12 (𝑎 = 𝑖 → Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑏 ∈ (1...𝑁)(((𝐿𝑖)‘𝑏) · (𝑍𝑏)))
146145cbvprodv 14646 . . . . . . . . . . 11 𝑎 ∈ (0..^𝑠𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = ∏𝑖 ∈ (0..^𝑠𝑏 ∈ (1...𝑁)(((𝐿𝑖)‘𝑏) · (𝑍𝑏))
147 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑏 = 𝑗 → ((𝐿𝑖)‘𝑏) = ((𝐿𝑖)‘𝑗))
148 oveq2 6658 . . . . . . . . . . . . . . 15 (𝑏 = 𝑗 → (𝑍𝑏) = (𝑍𝑗))
149147, 148oveq12d 6668 . . . . . . . . . . . . . 14 (𝑏 = 𝑗 → (((𝐿𝑖)‘𝑏) · (𝑍𝑏)) = (((𝐿𝑖)‘𝑗) · (𝑍𝑗)))
150149cbvsumv 14426 . . . . . . . . . . . . 13 Σ𝑏 ∈ (1...𝑁)(((𝐿𝑖)‘𝑏) · (𝑍𝑏)) = Σ𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗))
151150a1i 11 . . . . . . . . . . . 12 (𝑖 ∈ (0..^𝑠) → Σ𝑏 ∈ (1...𝑁)(((𝐿𝑖)‘𝑏) · (𝑍𝑏)) = Σ𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)))
152151prodeq2i 14649 . . . . . . . . . . 11 𝑖 ∈ (0..^𝑠𝑏 ∈ (1...𝑁)(((𝐿𝑖)‘𝑏) · (𝑍𝑏)) = ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗))
153146, 152eqtri 2644 . . . . . . . . . 10 𝑎 ∈ (0..^𝑠𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗))
154 fveq2 6191 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑖 → (𝐿𝑎) = (𝐿𝑖))
155 fveq2 6191 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑖 → (𝑐𝑎) = (𝑐𝑖))
156154, 155fveq12d 6197 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑖 → ((𝐿𝑎)‘(𝑐𝑎)) = ((𝐿𝑖)‘(𝑐𝑖)))
157156cbvprodv 14646 . . . . . . . . . . . . . . . 16 𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) = ∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑐𝑖))
158157oveq1i 6660 . . . . . . . . . . . . . . 15 (∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑛)) = (∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑐𝑖)) · (𝑍𝑛))
159158a1i 11 . . . . . . . . . . . . . 14 (𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑛) → (∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑛)) = (∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑐𝑖)) · (𝑍𝑛)))
160159sumeq2i 14429 . . . . . . . . . . . . 13 Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑛)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑐𝑖)) · (𝑍𝑛))
161 simpl 473 . . . . . . . . . . . . . . . . . 18 ((𝑐 = 𝑘𝑖 ∈ (0..^𝑠)) → 𝑐 = 𝑘)
162161fveq1d 6193 . . . . . . . . . . . . . . . . 17 ((𝑐 = 𝑘𝑖 ∈ (0..^𝑠)) → (𝑐𝑖) = (𝑘𝑖))
163162fveq2d 6195 . . . . . . . . . . . . . . . 16 ((𝑐 = 𝑘𝑖 ∈ (0..^𝑠)) → ((𝐿𝑖)‘(𝑐𝑖)) = ((𝐿𝑖)‘(𝑘𝑖)))
164163prodeq2dv 14653 . . . . . . . . . . . . . . 15 (𝑐 = 𝑘 → ∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑐𝑖)) = ∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)))
165164oveq1d 6665 . . . . . . . . . . . . . 14 (𝑐 = 𝑘 → (∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑐𝑖)) · (𝑍𝑛)) = (∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛)))
166165cbvsumv 14426 . . . . . . . . . . . . 13 Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑐𝑖)) · (𝑍𝑛)) = Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛))
167160, 166eqtri 2644 . . . . . . . . . . . 12 Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑛)) = Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛))
168167a1i 11 . . . . . . . . . . 11 (𝑛 ∈ (0...(𝑠 · 𝑁)) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑛)) = Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛)))
169168sumeq2i 14429 . . . . . . . . . 10 Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑛)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛))
170153, 169eqeq12i 2636 . . . . . . . . 9 (∏𝑎 ∈ (0..^𝑠𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑛)) ↔ ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛)))
171140, 170bitri 264 . . . . . . . 8 (∏𝑎 ∈ (0..^𝑠𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑠 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑚)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) ↔ ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛)))
172171imbi2i 326 . . . . . . 7 ((𝑠𝑆 → ∏𝑎 ∈ (0..^𝑠𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑠 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑚)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚))) ↔ (𝑠𝑆 → ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛))))
173133, 172sylib 208 . . . . . 6 ((((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑎 ∈ (0..^𝑠𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑠 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑚)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))) ∧ (𝑠 + 1) ≤ 𝑆) → (𝑠𝑆 → ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛))))
174 simpr 477 . . . . . 6 ((((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑎 ∈ (0..^𝑠𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑠 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑚)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))) ∧ (𝑠 + 1) ≤ 𝑆) → (𝑠 + 1) ≤ 𝑆)
17571ad3antrrr 766 . . . . . . 7 ((((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛)))) ∧ (𝑠 + 1) ≤ 𝑆) → 𝑁 ∈ ℕ0)
1761ad3antrrr 766 . . . . . . 7 ((((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛)))) ∧ (𝑠 + 1) ≤ 𝑆) → 𝑆 ∈ ℕ0)
17783ad3antrrr 766 . . . . . . 7 ((((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛)))) ∧ (𝑠 + 1) ≤ 𝑆) → 𝑍 ∈ ℂ)
178 breprexp.h . . . . . . . 8 (𝜑𝐿:(0..^𝑆)⟶(ℂ ↑𝑚 ℕ))
179178ad3antrrr 766 . . . . . . 7 ((((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛)))) ∧ (𝑠 + 1) ≤ 𝑆) → 𝐿:(0..^𝑆)⟶(ℂ ↑𝑚 ℕ))
180 simpllr 799 . . . . . . 7 ((((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛)))) ∧ (𝑠 + 1) ≤ 𝑆) → 𝑠 ∈ ℕ0)
181 simpr 477 . . . . . . 7 ((((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛)))) ∧ (𝑠 + 1) ≤ 𝑆) → (𝑠 + 1) ≤ 𝑆)
1822, 180sseldi 3601 . . . . . . . . 9 ((((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛)))) ∧ (𝑠 + 1) ≤ 𝑆) → 𝑠 ∈ ℝ)
183 1red 10055 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛)))) ∧ (𝑠 + 1) ≤ 𝑆) → 1 ∈ ℝ)
184182, 183readdcld 10069 . . . . . . . . 9 ((((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛)))) ∧ (𝑠 + 1) ≤ 𝑆) → (𝑠 + 1) ∈ ℝ)
1852, 176sseldi 3601 . . . . . . . . 9 ((((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛)))) ∧ (𝑠 + 1) ≤ 𝑆) → 𝑆 ∈ ℝ)
186182ltp1d 10954 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛)))) ∧ (𝑠 + 1) ≤ 𝑆) → 𝑠 < (𝑠 + 1))
187182, 184, 186ltled 10185 . . . . . . . . 9 ((((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛)))) ∧ (𝑠 + 1) ≤ 𝑆) → 𝑠 ≤ (𝑠 + 1))
188182, 184, 185, 187, 181letrd 10194 . . . . . . . 8 ((((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛)))) ∧ (𝑠 + 1) ≤ 𝑆) → 𝑠𝑆)
189 simplr 792 . . . . . . . . 9 ((((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛)))) ∧ (𝑠 + 1) ≤ 𝑆) → (𝑠𝑆 → ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛))))
190189, 172sylibr 224 . . . . . . . 8 ((((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛)))) ∧ (𝑠 + 1) ≤ 𝑆) → (𝑠𝑆 → ∏𝑎 ∈ (0..^𝑠𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑠 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑚)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚))))
191188, 190mpd 15 . . . . . . 7 ((((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛)))) ∧ (𝑠 + 1) ≤ 𝑆) → ∏𝑎 ∈ (0..^𝑠𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑠 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑚)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
192175, 176, 177, 179, 180, 181, 191breprexplemc 30710 . . . . . 6 ((((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑖 ∈ (0..^𝑠𝑗 ∈ (1...𝑁)(((𝐿𝑖)‘𝑗) · (𝑍𝑗)) = Σ𝑛 ∈ (0...(𝑠 · 𝑁))Σ𝑘 ∈ ((1...𝑁)(repr‘𝑠)𝑛)(∏𝑖 ∈ (0..^𝑠)((𝐿𝑖)‘(𝑘𝑖)) · (𝑍𝑛)))) ∧ (𝑠 + 1) ≤ 𝑆) → ∏𝑎 ∈ (0..^(𝑠 + 1))Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...((𝑠 + 1) · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘(𝑠 + 1))𝑚)(∏𝑎 ∈ (0..^(𝑠 + 1))((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
193132, 173, 174, 192syl21anc 1325 . . . . 5 ((((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑎 ∈ (0..^𝑠𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑠 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑚)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))) ∧ (𝑠 + 1) ≤ 𝑆) → ∏𝑎 ∈ (0..^(𝑠 + 1))Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...((𝑠 + 1) · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘(𝑠 + 1))𝑚)(∏𝑎 ∈ (0..^(𝑠 + 1))((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
194193ex 450 . . . 4 (((𝜑𝑠 ∈ ℕ0) ∧ (𝑠𝑆 → ∏𝑎 ∈ (0..^𝑠𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑠 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑠)𝑚)(∏𝑎 ∈ (0..^𝑠)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))) → ((𝑠 + 1) ≤ 𝑆 → ∏𝑎 ∈ (0..^(𝑠 + 1))Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...((𝑠 + 1) · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘(𝑠 + 1))𝑚)(∏𝑎 ∈ (0..^(𝑠 + 1))((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚))))
19521, 36, 51, 66, 131, 194nn0indd 11474 . . 3 ((𝜑𝑆 ∈ ℕ0) → (𝑆𝑆 → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚))))
1966, 195mpd 15 . 2 ((𝜑𝑆 ∈ ℕ0) → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
1971, 196mpdan 702 1 (𝜑 → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  c0 3915  ifcif 4086  {csn 4177   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cle 10075  cn 11020  0cn0 11292  ...cfz 12326  ..^cfzo 12465  cexp 12860  Σcsu 14416  cprod 14635  reprcrepr 30686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-prod 14636  df-repr 30687
This theorem is referenced by:  breprexpnat  30712  vtsprod  30717
  Copyright terms: Public domain W3C validator