MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatsymb Structured version   Visualization version   GIF version

Theorem ccatsymb 13366
Description: The symbol at a given position in a concatenated word. (Contributed by AV, 26-May-2018.) (Proof shortened by AV, 24-Nov-2018.)
Assertion
Ref Expression
ccatsymb ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵)‘𝐼) = if(𝐼 < (#‘𝐴), (𝐴𝐼), (𝐵‘(𝐼 − (#‘𝐴)))))

Proof of Theorem ccatsymb
StepHypRef Expression
1 id 22 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
213adant3 1081 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
32ad2antrl 764 . . . . . . 7 ((0 ≤ 𝐼 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
4 simpr 477 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴)) → 𝐼 < (#‘𝐴))
54anim2i 593 . . . . . . . 8 ((0 ≤ 𝐼 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴))) → (0 ≤ 𝐼𝐼 < (#‘𝐴)))
6 simp3 1063 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → 𝐼 ∈ ℤ)
7 0zd 11389 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → 0 ∈ ℤ)
8 lencl 13324 . . . . . . . . . . . . 13 (𝐴 ∈ Word 𝑉 → (#‘𝐴) ∈ ℕ0)
98nn0zd 11480 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → (#‘𝐴) ∈ ℤ)
1093ad2ant1 1082 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → (#‘𝐴) ∈ ℤ)
116, 7, 103jca 1242 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → (𝐼 ∈ ℤ ∧ 0 ∈ ℤ ∧ (#‘𝐴) ∈ ℤ))
1211ad2antrl 764 . . . . . . . . 9 ((0 ≤ 𝐼 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴))) → (𝐼 ∈ ℤ ∧ 0 ∈ ℤ ∧ (#‘𝐴) ∈ ℤ))
13 elfzo 12472 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 0 ∈ ℤ ∧ (#‘𝐴) ∈ ℤ) → (𝐼 ∈ (0..^(#‘𝐴)) ↔ (0 ≤ 𝐼𝐼 < (#‘𝐴))))
1412, 13syl 17 . . . . . . . 8 ((0 ≤ 𝐼 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴))) → (𝐼 ∈ (0..^(#‘𝐴)) ↔ (0 ≤ 𝐼𝐼 < (#‘𝐴))))
155, 14mpbird 247 . . . . . . 7 ((0 ≤ 𝐼 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴))) → 𝐼 ∈ (0..^(#‘𝐴)))
16 df-3an 1039 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ (0..^(#‘𝐴))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ (0..^(#‘𝐴))))
173, 15, 16sylanbrc 698 . . . . . 6 ((0 ≤ 𝐼 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ (0..^(#‘𝐴))))
18 ccatval1 13361 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ (0..^(#‘𝐴))) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐴𝐼))
1918eqcomd 2628 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ (0..^(#‘𝐴))) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼))
2017, 19syl 17 . . . . 5 ((0 ≤ 𝐼 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴))) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼))
2120ex 450 . . . 4 (0 ≤ 𝐼 → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴)) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
22 zre 11381 . . . . . . . . . 10 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
23 0red 10041 . . . . . . . . . 10 (𝐼 ∈ ℤ → 0 ∈ ℝ)
2422, 23jca 554 . . . . . . . . 9 (𝐼 ∈ ℤ → (𝐼 ∈ ℝ ∧ 0 ∈ ℝ))
25243ad2ant3 1084 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → (𝐼 ∈ ℝ ∧ 0 ∈ ℝ))
26 ltnle 10117 . . . . . . . 8 ((𝐼 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐼 < 0 ↔ ¬ 0 ≤ 𝐼))
2725, 26syl 17 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → (𝐼 < 0 ↔ ¬ 0 ≤ 𝐼))
28 id 22 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → (𝐴 ∈ Word 𝑉𝐼 ∈ ℤ))
29283adant2 1080 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → (𝐴 ∈ Word 𝑉𝐼 ∈ ℤ))
3029adantr 481 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐴 ∈ Word 𝑉𝐼 ∈ ℤ))
31 simpr 477 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ 𝐼 < 0) → 𝐼 < 0)
3231orcd 407 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐼 < 0 ∨ (#‘𝐴) ≤ 𝐼))
33 wrdsymb0 13339 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (#‘𝐴) ≤ 𝐼) → (𝐴𝐼) = ∅))
3430, 32, 33sylc 65 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐴𝐼) = ∅)
35 ccatcl 13359 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
36353adant3 1081 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
3736, 6jca 554 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝐼 ∈ ℤ))
3837adantr 481 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ 𝐼 < 0) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝐼 ∈ ℤ))
3931orcd 407 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐼 < 0 ∨ (#‘(𝐴 ++ 𝐵)) ≤ 𝐼))
40 wrdsymb0 13339 . . . . . . . . . 10 (((𝐴 ++ 𝐵) ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (#‘(𝐴 ++ 𝐵)) ≤ 𝐼) → ((𝐴 ++ 𝐵)‘𝐼) = ∅))
4138, 39, 40sylc 65 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ 𝐼 < 0) → ((𝐴 ++ 𝐵)‘𝐼) = ∅)
4234, 41eqtr4d 2659 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼))
4342ex 450 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → (𝐼 < 0 → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
4427, 43sylbird 250 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → (¬ 0 ≤ 𝐼 → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
4544adantr 481 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴)) → (¬ 0 ≤ 𝐼 → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
4645com12 32 . . . 4 (¬ 0 ≤ 𝐼 → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴)) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
4721, 46pm2.61i 176 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ 𝐼 < (#‘𝐴)) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼))
482ad2antrl 764 . . . . . . . 8 ((𝐼 < ((#‘𝐴) + (#‘𝐵)) ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
498nn0red 11352 . . . . . . . . . . . . . 14 (𝐴 ∈ Word 𝑉 → (#‘𝐴) ∈ ℝ)
50 lenlt 10116 . . . . . . . . . . . . . 14 (((#‘𝐴) ∈ ℝ ∧ 𝐼 ∈ ℝ) → ((#‘𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (#‘𝐴)))
5149, 22, 50syl2an 494 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → ((#‘𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (#‘𝐴)))
52513adant2 1080 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → ((#‘𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (#‘𝐴)))
5352biimpar 502 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴)) → (#‘𝐴) ≤ 𝐼)
5453anim2i 593 . . . . . . . . . 10 ((𝐼 < ((#‘𝐴) + (#‘𝐵)) ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴))) → (𝐼 < ((#‘𝐴) + (#‘𝐵)) ∧ (#‘𝐴) ≤ 𝐼))
5554ancomd 467 . . . . . . . . 9 ((𝐼 < ((#‘𝐴) + (#‘𝐵)) ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴))) → ((#‘𝐴) ≤ 𝐼𝐼 < ((#‘𝐴) + (#‘𝐵))))
56 lencl 13324 . . . . . . . . . . . . . . 15 (𝐵 ∈ Word 𝑉 → (#‘𝐵) ∈ ℕ0)
5756nn0zd 11480 . . . . . . . . . . . . . 14 (𝐵 ∈ Word 𝑉 → (#‘𝐵) ∈ ℤ)
58 zaddcl 11417 . . . . . . . . . . . . . 14 (((#‘𝐴) ∈ ℤ ∧ (#‘𝐵) ∈ ℤ) → ((#‘𝐴) + (#‘𝐵)) ∈ ℤ)
599, 57, 58syl2an 494 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((#‘𝐴) + (#‘𝐵)) ∈ ℤ)
60593adant3 1081 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → ((#‘𝐴) + (#‘𝐵)) ∈ ℤ)
616, 10, 603jca 1242 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → (𝐼 ∈ ℤ ∧ (#‘𝐴) ∈ ℤ ∧ ((#‘𝐴) + (#‘𝐵)) ∈ ℤ))
6261ad2antrl 764 . . . . . . . . . 10 ((𝐼 < ((#‘𝐴) + (#‘𝐵)) ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴))) → (𝐼 ∈ ℤ ∧ (#‘𝐴) ∈ ℤ ∧ ((#‘𝐴) + (#‘𝐵)) ∈ ℤ))
63 elfzo 12472 . . . . . . . . . 10 ((𝐼 ∈ ℤ ∧ (#‘𝐴) ∈ ℤ ∧ ((#‘𝐴) + (#‘𝐵)) ∈ ℤ) → (𝐼 ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵))) ↔ ((#‘𝐴) ≤ 𝐼𝐼 < ((#‘𝐴) + (#‘𝐵)))))
6462, 63syl 17 . . . . . . . . 9 ((𝐼 < ((#‘𝐴) + (#‘𝐵)) ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴))) → (𝐼 ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵))) ↔ ((#‘𝐴) ≤ 𝐼𝐼 < ((#‘𝐴) + (#‘𝐵)))))
6555, 64mpbird 247 . . . . . . . 8 ((𝐼 < ((#‘𝐴) + (#‘𝐵)) ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴))) → 𝐼 ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵))))
66 df-3an 1039 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵)))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵)))))
6748, 65, 66sylanbrc 698 . . . . . . 7 ((𝐼 < ((#‘𝐴) + (#‘𝐵)) ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵)))))
68 ccatval2 13362 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵)))) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐵‘(𝐼 − (#‘𝐴))))
6967, 68syl 17 . . . . . 6 ((𝐼 < ((#‘𝐴) + (#‘𝐵)) ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴))) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐵‘(𝐼 − (#‘𝐴))))
7069ex 450 . . . . 5 (𝐼 < ((#‘𝐴) + (#‘𝐵)) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴)) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐵‘(𝐼 − (#‘𝐴)))))
7156nn0red 11352 . . . . . . . . . . 11 (𝐵 ∈ Word 𝑉 → (#‘𝐵) ∈ ℝ)
72 readdcl 10019 . . . . . . . . . . 11 (((#‘𝐴) ∈ ℝ ∧ (#‘𝐵) ∈ ℝ) → ((#‘𝐴) + (#‘𝐵)) ∈ ℝ)
7349, 71, 72syl2an 494 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((#‘𝐴) + (#‘𝐵)) ∈ ℝ)
74733adant3 1081 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → ((#‘𝐴) + (#‘𝐵)) ∈ ℝ)
75223ad2ant3 1084 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → 𝐼 ∈ ℝ)
7674, 75lenltd 10183 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → (((#‘𝐴) + (#‘𝐵)) ≤ 𝐼 ↔ ¬ 𝐼 < ((#‘𝐴) + (#‘𝐵))))
7737adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝐼 ∈ ℤ))
78 ccatlen 13360 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (#‘(𝐴 ++ 𝐵)) = ((#‘𝐴) + (#‘𝐵)))
79783adant3 1081 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → (#‘(𝐴 ++ 𝐵)) = ((#‘𝐴) + (#‘𝐵)))
8079adantr 481 . . . . . . . . . . . . 13 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) → (#‘(𝐴 ++ 𝐵)) = ((#‘𝐴) + (#‘𝐵)))
81 simpr 477 . . . . . . . . . . . . 13 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) → ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼)
8280, 81eqbrtrd 4675 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) → (#‘(𝐴 ++ 𝐵)) ≤ 𝐼)
8382olcd 408 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) → (𝐼 < 0 ∨ (#‘(𝐴 ++ 𝐵)) ≤ 𝐼))
8477, 83, 40sylc 65 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) → ((𝐴 ++ 𝐵)‘𝐼) = ∅)
85 simp2 1062 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → 𝐵 ∈ Word 𝑉)
86 zsubcl 11419 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ ℤ ∧ (#‘𝐴) ∈ ℤ) → (𝐼 − (#‘𝐴)) ∈ ℤ)
879, 86sylan2 491 . . . . . . . . . . . . . . 15 ((𝐼 ∈ ℤ ∧ 𝐴 ∈ Word 𝑉) → (𝐼 − (#‘𝐴)) ∈ ℤ)
8887ancoms 469 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → (𝐼 − (#‘𝐴)) ∈ ℤ)
89883adant2 1080 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → (𝐼 − (#‘𝐴)) ∈ ℤ)
9085, 89jca 554 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → (𝐵 ∈ Word 𝑉 ∧ (𝐼 − (#‘𝐴)) ∈ ℤ))
9190adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) → (𝐵 ∈ Word 𝑉 ∧ (𝐼 − (#‘𝐴)) ∈ ℤ))
92 leaddsub2 10505 . . . . . . . . . . . . . 14 (((#‘𝐴) ∈ ℝ ∧ (#‘𝐵) ∈ ℝ ∧ 𝐼 ∈ ℝ) → (((#‘𝐴) + (#‘𝐵)) ≤ 𝐼 ↔ (#‘𝐵) ≤ (𝐼 − (#‘𝐴))))
9349, 71, 22, 92syl3an 1368 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → (((#‘𝐴) + (#‘𝐵)) ≤ 𝐼 ↔ (#‘𝐵) ≤ (𝐼 − (#‘𝐴))))
9493biimpa 501 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) → (#‘𝐵) ≤ (𝐼 − (#‘𝐴)))
9594olcd 408 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) → ((𝐼 − (#‘𝐴)) < 0 ∨ (#‘𝐵) ≤ (𝐼 − (#‘𝐴))))
96 wrdsymb0 13339 . . . . . . . . . . 11 ((𝐵 ∈ Word 𝑉 ∧ (𝐼 − (#‘𝐴)) ∈ ℤ) → (((𝐼 − (#‘𝐴)) < 0 ∨ (#‘𝐵) ≤ (𝐼 − (#‘𝐴))) → (𝐵‘(𝐼 − (#‘𝐴))) = ∅))
9791, 95, 96sylc 65 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) → (𝐵‘(𝐼 − (#‘𝐴))) = ∅)
9884, 97eqtr4d 2659 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ((#‘𝐴) + (#‘𝐵)) ≤ 𝐼) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐵‘(𝐼 − (#‘𝐴))))
9998ex 450 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → (((#‘𝐴) + (#‘𝐵)) ≤ 𝐼 → ((𝐴 ++ 𝐵)‘𝐼) = (𝐵‘(𝐼 − (#‘𝐴)))))
10076, 99sylbird 250 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → (¬ 𝐼 < ((#‘𝐴) + (#‘𝐵)) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐵‘(𝐼 − (#‘𝐴)))))
101100adantr 481 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴)) → (¬ 𝐼 < ((#‘𝐴) + (#‘𝐵)) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐵‘(𝐼 − (#‘𝐴)))))
102101com12 32 . . . . 5 𝐼 < ((#‘𝐴) + (#‘𝐵)) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴)) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐵‘(𝐼 − (#‘𝐴)))))
10370, 102pm2.61i 176 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴)) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐵‘(𝐼 − (#‘𝐴))))
104103eqcomd 2628 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (#‘𝐴)) → (𝐵‘(𝐼 − (#‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼))
10547, 104ifeqda 4121 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → if(𝐼 < (#‘𝐴), (𝐴𝐼), (𝐵‘(𝐼 − (#‘𝐴)))) = ((𝐴 ++ 𝐵)‘𝐼))
106105eqcomd 2628 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵)‘𝐼) = if(𝐼 < (#‘𝐴), (𝐴𝐼), (𝐵‘(𝐼 − (#‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  c0 3915  ifcif 4086   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936   + caddc 9939   < clt 10074  cle 10075  cmin 10266  cz 11377  ..^cfzo 12465  #chash 13117  Word cword 13291   ++ cconcat 13293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301
This theorem is referenced by:  swrdccatin2  13487
  Copyright terms: Public domain W3C validator