![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cntnevol | Structured version Visualization version GIF version |
Description: Counting and Lebesgue measures are different. (Contributed by Thierry Arnoux, 27-Jan-2017.) |
Ref | Expression |
---|---|
cntnevol | ⊢ (# ↾ 𝒫 𝑂) ≠ vol |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1ne0 10005 | . . . . 5 ⊢ 1 ≠ 0 | |
2 | 1 | a1i 11 | . . . 4 ⊢ (1 ∈ 𝑂 → 1 ≠ 0) |
3 | snelpwi 4912 | . . . . . 6 ⊢ (1 ∈ 𝑂 → {1} ∈ 𝒫 𝑂) | |
4 | fvres 6207 | . . . . . 6 ⊢ ({1} ∈ 𝒫 𝑂 → ((# ↾ 𝒫 𝑂)‘{1}) = (#‘{1})) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (1 ∈ 𝑂 → ((# ↾ 𝒫 𝑂)‘{1}) = (#‘{1})) |
6 | 1re 10039 | . . . . . 6 ⊢ 1 ∈ ℝ | |
7 | hashsng 13159 | . . . . . 6 ⊢ (1 ∈ ℝ → (#‘{1}) = 1) | |
8 | 6, 7 | ax-mp 5 | . . . . 5 ⊢ (#‘{1}) = 1 |
9 | 5, 8 | syl6eq 2672 | . . . 4 ⊢ (1 ∈ 𝑂 → ((# ↾ 𝒫 𝑂)‘{1}) = 1) |
10 | snssi 4339 | . . . . . . 7 ⊢ (1 ∈ ℝ → {1} ⊆ ℝ) | |
11 | ovolsn 23263 | . . . . . . 7 ⊢ (1 ∈ ℝ → (vol*‘{1}) = 0) | |
12 | nulmbl 23303 | . . . . . . 7 ⊢ (({1} ⊆ ℝ ∧ (vol*‘{1}) = 0) → {1} ∈ dom vol) | |
13 | 10, 11, 12 | syl2anc 693 | . . . . . 6 ⊢ (1 ∈ ℝ → {1} ∈ dom vol) |
14 | mblvol 23298 | . . . . . . 7 ⊢ ({1} ∈ dom vol → (vol‘{1}) = (vol*‘{1})) | |
15 | 6, 11 | ax-mp 5 | . . . . . . 7 ⊢ (vol*‘{1}) = 0 |
16 | 14, 15 | syl6eq 2672 | . . . . . 6 ⊢ ({1} ∈ dom vol → (vol‘{1}) = 0) |
17 | 6, 13, 16 | mp2b 10 | . . . . 5 ⊢ (vol‘{1}) = 0 |
18 | 17 | a1i 11 | . . . 4 ⊢ (1 ∈ 𝑂 → (vol‘{1}) = 0) |
19 | 2, 9, 18 | 3netr4d 2871 | . . 3 ⊢ (1 ∈ 𝑂 → ((# ↾ 𝒫 𝑂)‘{1}) ≠ (vol‘{1})) |
20 | fveq1 6190 | . . . 4 ⊢ ((# ↾ 𝒫 𝑂) = vol → ((# ↾ 𝒫 𝑂)‘{1}) = (vol‘{1})) | |
21 | 20 | necon3i 2826 | . . 3 ⊢ (((# ↾ 𝒫 𝑂)‘{1}) ≠ (vol‘{1}) → (# ↾ 𝒫 𝑂) ≠ vol) |
22 | 19, 21 | syl 17 | . 2 ⊢ (1 ∈ 𝑂 → (# ↾ 𝒫 𝑂) ≠ vol) |
23 | 6, 13 | ax-mp 5 | . . . . . . 7 ⊢ {1} ∈ dom vol |
24 | 23 | biantrur 527 | . . . . . 6 ⊢ (¬ {1} ∈ dom (# ↾ 𝒫 𝑂) ↔ ({1} ∈ dom vol ∧ ¬ {1} ∈ dom (# ↾ 𝒫 𝑂))) |
25 | snex 4908 | . . . . . . . . 9 ⊢ {1} ∈ V | |
26 | 25 | elpw 4164 | . . . . . . . 8 ⊢ ({1} ∈ 𝒫 𝑂 ↔ {1} ⊆ 𝑂) |
27 | dmhashres 13129 | . . . . . . . . 9 ⊢ dom (# ↾ 𝒫 𝑂) = 𝒫 𝑂 | |
28 | 27 | eleq2i 2693 | . . . . . . . 8 ⊢ ({1} ∈ dom (# ↾ 𝒫 𝑂) ↔ {1} ∈ 𝒫 𝑂) |
29 | 1ex 10035 | . . . . . . . . 9 ⊢ 1 ∈ V | |
30 | 29 | snss 4316 | . . . . . . . 8 ⊢ (1 ∈ 𝑂 ↔ {1} ⊆ 𝑂) |
31 | 26, 28, 30 | 3bitr4i 292 | . . . . . . 7 ⊢ ({1} ∈ dom (# ↾ 𝒫 𝑂) ↔ 1 ∈ 𝑂) |
32 | 31 | notbii 310 | . . . . . 6 ⊢ (¬ {1} ∈ dom (# ↾ 𝒫 𝑂) ↔ ¬ 1 ∈ 𝑂) |
33 | 24, 32 | bitr3i 266 | . . . . 5 ⊢ (({1} ∈ dom vol ∧ ¬ {1} ∈ dom (# ↾ 𝒫 𝑂)) ↔ ¬ 1 ∈ 𝑂) |
34 | nelne1 2890 | . . . . 5 ⊢ (({1} ∈ dom vol ∧ ¬ {1} ∈ dom (# ↾ 𝒫 𝑂)) → dom vol ≠ dom (# ↾ 𝒫 𝑂)) | |
35 | 33, 34 | sylbir 225 | . . . 4 ⊢ (¬ 1 ∈ 𝑂 → dom vol ≠ dom (# ↾ 𝒫 𝑂)) |
36 | 35 | necomd 2849 | . . 3 ⊢ (¬ 1 ∈ 𝑂 → dom (# ↾ 𝒫 𝑂) ≠ dom vol) |
37 | dmeq 5324 | . . . 4 ⊢ ((# ↾ 𝒫 𝑂) = vol → dom (# ↾ 𝒫 𝑂) = dom vol) | |
38 | 37 | necon3i 2826 | . . 3 ⊢ (dom (# ↾ 𝒫 𝑂) ≠ dom vol → (# ↾ 𝒫 𝑂) ≠ vol) |
39 | 36, 38 | syl 17 | . 2 ⊢ (¬ 1 ∈ 𝑂 → (# ↾ 𝒫 𝑂) ≠ vol) |
40 | 22, 39 | pm2.61i 176 | 1 ⊢ (# ↾ 𝒫 𝑂) ≠ vol |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ⊆ wss 3574 𝒫 cpw 4158 {csn 4177 dom cdm 5114 ↾ cres 5116 ‘cfv 5888 ℝcr 9935 0cc0 9936 1c1 9937 #chash 13117 vol*covol 23231 volcvol 23232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xadd 11947 df-ioo 12179 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-sum 14417 df-xmet 19739 df-met 19740 df-ovol 23233 df-vol 23234 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |