![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1add | Structured version Visualization version GIF version |
Description: The coefficient vector of an addition. (Contributed by Stefan O'Rear, 24-Mar-2015.) |
Ref | Expression |
---|---|
coe1add.y | ⊢ 𝑌 = (Poly1‘𝑅) |
coe1add.b | ⊢ 𝐵 = (Base‘𝑌) |
coe1add.p | ⊢ ✚ = (+g‘𝑌) |
coe1add.q | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
coe1add | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ✚ 𝐺)) = ((coe1‘𝐹) ∘𝑓 + (coe1‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . . . 5 ⊢ (1𝑜 mPoly 𝑅) = (1𝑜 mPoly 𝑅) | |
2 | coe1add.y | . . . . . 6 ⊢ 𝑌 = (Poly1‘𝑅) | |
3 | eqid 2622 | . . . . . 6 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
4 | coe1add.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑌) | |
5 | 2, 3, 4 | ply1bas 19565 | . . . . 5 ⊢ 𝐵 = (Base‘(1𝑜 mPoly 𝑅)) |
6 | coe1add.q | . . . . 5 ⊢ + = (+g‘𝑅) | |
7 | coe1add.p | . . . . . 6 ⊢ ✚ = (+g‘𝑌) | |
8 | 2, 1, 7 | ply1plusg 19595 | . . . . 5 ⊢ ✚ = (+g‘(1𝑜 mPoly 𝑅)) |
9 | simp2 1062 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐹 ∈ 𝐵) | |
10 | simp3 1063 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ 𝐵) | |
11 | 1, 5, 6, 8, 9, 10 | mpladd 19442 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ✚ 𝐺) = (𝐹 ∘𝑓 + 𝐺)) |
12 | 11 | coeq1d 5283 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎}))) = ((𝐹 ∘𝑓 + 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎})))) |
13 | eqid 2622 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
14 | 2, 4, 13 | ply1basf 19572 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → 𝐹:(ℕ0 ↑𝑚 1𝑜)⟶(Base‘𝑅)) |
15 | ffn 6045 | . . . . . 6 ⊢ (𝐹:(ℕ0 ↑𝑚 1𝑜)⟶(Base‘𝑅) → 𝐹 Fn (ℕ0 ↑𝑚 1𝑜)) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → 𝐹 Fn (ℕ0 ↑𝑚 1𝑜)) |
17 | 16 | 3ad2ant2 1083 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐹 Fn (ℕ0 ↑𝑚 1𝑜)) |
18 | 2, 4, 13 | ply1basf 19572 | . . . . . 6 ⊢ (𝐺 ∈ 𝐵 → 𝐺:(ℕ0 ↑𝑚 1𝑜)⟶(Base‘𝑅)) |
19 | ffn 6045 | . . . . . 6 ⊢ (𝐺:(ℕ0 ↑𝑚 1𝑜)⟶(Base‘𝑅) → 𝐺 Fn (ℕ0 ↑𝑚 1𝑜)) | |
20 | 18, 19 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ 𝐵 → 𝐺 Fn (ℕ0 ↑𝑚 1𝑜)) |
21 | 20 | 3ad2ant3 1084 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐺 Fn (ℕ0 ↑𝑚 1𝑜)) |
22 | df1o2 7572 | . . . . . 6 ⊢ 1𝑜 = {∅} | |
23 | nn0ex 11298 | . . . . . 6 ⊢ ℕ0 ∈ V | |
24 | 0ex 4790 | . . . . . 6 ⊢ ∅ ∈ V | |
25 | eqid 2622 | . . . . . 6 ⊢ (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎})) = (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎})) | |
26 | 22, 23, 24, 25 | mapsnf1o3 7906 | . . . . 5 ⊢ (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎})):ℕ0–1-1-onto→(ℕ0 ↑𝑚 1𝑜) |
27 | f1of 6137 | . . . . 5 ⊢ ((𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎})):ℕ0–1-1-onto→(ℕ0 ↑𝑚 1𝑜) → (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎})):ℕ0⟶(ℕ0 ↑𝑚 1𝑜)) | |
28 | 26, 27 | mp1i 13 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎})):ℕ0⟶(ℕ0 ↑𝑚 1𝑜)) |
29 | ovexd 6680 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (ℕ0 ↑𝑚 1𝑜) ∈ V) | |
30 | 23 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ℕ0 ∈ V) |
31 | inidm 3822 | . . . 4 ⊢ ((ℕ0 ↑𝑚 1𝑜) ∩ (ℕ0 ↑𝑚 1𝑜)) = (ℕ0 ↑𝑚 1𝑜) | |
32 | 17, 21, 28, 29, 29, 30, 31 | ofco 6917 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹 ∘𝑓 + 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎}))) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎}))) ∘𝑓 + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎}))))) |
33 | 12, 32 | eqtrd 2656 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎}))) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎}))) ∘𝑓 + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎}))))) |
34 | 2 | ply1ring 19618 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ Ring) |
35 | 4, 7 | ringacl 18578 | . . . 4 ⊢ ((𝑌 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ✚ 𝐺) ∈ 𝐵) |
36 | 34, 35 | syl3an1 1359 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ✚ 𝐺) ∈ 𝐵) |
37 | eqid 2622 | . . . 4 ⊢ (coe1‘(𝐹 ✚ 𝐺)) = (coe1‘(𝐹 ✚ 𝐺)) | |
38 | 37, 4, 2, 25 | coe1fval2 19580 | . . 3 ⊢ ((𝐹 ✚ 𝐺) ∈ 𝐵 → (coe1‘(𝐹 ✚ 𝐺)) = ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎})))) |
39 | 36, 38 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ✚ 𝐺)) = ((𝐹 ✚ 𝐺) ∘ (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎})))) |
40 | eqid 2622 | . . . . 5 ⊢ (coe1‘𝐹) = (coe1‘𝐹) | |
41 | 40, 4, 2, 25 | coe1fval2 19580 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → (coe1‘𝐹) = (𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎})))) |
42 | 41 | 3ad2ant2 1083 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘𝐹) = (𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎})))) |
43 | eqid 2622 | . . . . 5 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
44 | 43, 4, 2, 25 | coe1fval2 19580 | . . . 4 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺) = (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎})))) |
45 | 44 | 3ad2ant3 1084 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘𝐺) = (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎})))) |
46 | 42, 45 | oveq12d 6668 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((coe1‘𝐹) ∘𝑓 + (coe1‘𝐺)) = ((𝐹 ∘ (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎}))) ∘𝑓 + (𝐺 ∘ (𝑎 ∈ ℕ0 ↦ (1𝑜 × {𝑎}))))) |
47 | 33, 39, 46 | 3eqtr4d 2666 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ✚ 𝐺)) = ((coe1‘𝐹) ∘𝑓 + (coe1‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∅c0 3915 {csn 4177 ↦ cmpt 4729 × cxp 5112 ∘ ccom 5118 Fn wfn 5883 ⟶wf 5884 –1-1-onto→wf1o 5887 ‘cfv 5888 (class class class)co 6650 ∘𝑓 cof 6895 1𝑜c1o 7553 ↑𝑚 cmap 7857 ℕ0cn0 11292 Basecbs 15857 +gcplusg 15941 Ringcrg 18547 mPoly cmpl 19353 PwSer1cps1 19545 Poly1cpl1 19547 coe1cco1 19548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-ofr 6898 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-fzo 12466 df-seq 12802 df-hash 13118 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-tset 15960 df-ple 15961 df-0g 16102 df-gsum 16103 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-submnd 17336 df-grp 17425 df-minusg 17426 df-mulg 17541 df-subg 17591 df-ghm 17658 df-cntz 17750 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-subrg 18778 df-psr 19356 df-mpl 19358 df-opsr 19360 df-psr1 19550 df-ply1 19552 df-coe1 19553 |
This theorem is referenced by: coe1addfv 19635 |
Copyright terms: Public domain | W3C validator |