| Step | Hyp | Ref
| Expression |
| 1 | | ssid 3624 |
. . . . 5
⊢ ℂ
⊆ ℂ |
| 2 | | plyconst 23962 |
. . . . 5
⊢ ((ℂ
⊆ ℂ ∧ 𝐴
∈ ℂ) → (ℂ × {𝐴}) ∈
(Poly‘ℂ)) |
| 3 | 1, 2 | mpan 706 |
. . . 4
⊢ (𝐴 ∈ ℂ → (ℂ
× {𝐴}) ∈
(Poly‘ℂ)) |
| 4 | | plyssc 23956 |
. . . . 5
⊢
(Poly‘𝑆)
⊆ (Poly‘ℂ) |
| 5 | 4 | sseli 3599 |
. . . 4
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈
(Poly‘ℂ)) |
| 6 | | plymulcl 23977 |
. . . 4
⊢
(((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝐹 ∈ (Poly‘ℂ))
→ ((ℂ × {𝐴}) ∘𝑓 ·
𝐹) ∈
(Poly‘ℂ)) |
| 7 | 3, 5, 6 | syl2an 494 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ ×
{𝐴})
∘𝑓 · 𝐹) ∈
(Poly‘ℂ)) |
| 8 | | eqid 2622 |
. . . 4
⊢
(coeff‘((ℂ × {𝐴}) ∘𝑓 ·
𝐹)) =
(coeff‘((ℂ × {𝐴}) ∘𝑓 ·
𝐹)) |
| 9 | 8 | coef3 23988 |
. . 3
⊢
(((ℂ × {𝐴}) ∘𝑓 ·
𝐹) ∈
(Poly‘ℂ) → (coeff‘((ℂ × {𝐴}) ∘𝑓 ·
𝐹)):ℕ0⟶ℂ) |
| 10 | | ffn 6045 |
. . 3
⊢
((coeff‘((ℂ × {𝐴}) ∘𝑓 ·
𝐹)):ℕ0⟶ℂ →
(coeff‘((ℂ × {𝐴}) ∘𝑓 ·
𝐹)) Fn
ℕ0) |
| 11 | 7, 9, 10 | 3syl 18 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘((ℂ
× {𝐴})
∘𝑓 · 𝐹)) Fn ℕ0) |
| 12 | | fconstg 6092 |
. . . . 5
⊢ (𝐴 ∈ ℂ →
(ℕ0 × {𝐴}):ℕ0⟶{𝐴}) |
| 13 | 12 | adantr 481 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℕ0
× {𝐴}):ℕ0⟶{𝐴}) |
| 14 | | ffn 6045 |
. . . 4
⊢
((ℕ0 × {𝐴}):ℕ0⟶{𝐴} → (ℕ0
× {𝐴}) Fn
ℕ0) |
| 15 | 13, 14 | syl 17 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℕ0
× {𝐴}) Fn
ℕ0) |
| 16 | | eqid 2622 |
. . . . . 6
⊢
(coeff‘𝐹) =
(coeff‘𝐹) |
| 17 | 16 | coef3 23988 |
. . . . 5
⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ) |
| 18 | 17 | adantl 482 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘𝐹):ℕ0⟶ℂ) |
| 19 | | ffn 6045 |
. . . 4
⊢
((coeff‘𝐹):ℕ0⟶ℂ →
(coeff‘𝐹) Fn
ℕ0) |
| 20 | 18, 19 | syl 17 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘𝐹) Fn
ℕ0) |
| 21 | | nn0ex 11298 |
. . . 4
⊢
ℕ0 ∈ V |
| 22 | 21 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → ℕ0
∈ V) |
| 23 | | inidm 3822 |
. . 3
⊢
(ℕ0 ∩ ℕ0) =
ℕ0 |
| 24 | 15, 20, 22, 22, 23 | offn 6908 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℕ0
× {𝐴})
∘𝑓 · (coeff‘𝐹)) Fn ℕ0) |
| 25 | 3 | ad2antrr 762 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (ℂ
× {𝐴}) ∈
(Poly‘ℂ)) |
| 26 | | eqid 2622 |
. . . . . . 7
⊢
(coeff‘(ℂ × {𝐴})) = (coeff‘(ℂ × {𝐴})) |
| 27 | 26 | coefv0 24004 |
. . . . . 6
⊢ ((ℂ
× {𝐴}) ∈
(Poly‘ℂ) → ((ℂ × {𝐴})‘0) = ((coeff‘(ℂ ×
{𝐴}))‘0)) |
| 28 | 25, 27 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((ℂ
× {𝐴})‘0) =
((coeff‘(ℂ × {𝐴}))‘0)) |
| 29 | | simpll 790 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈
ℂ) |
| 30 | | 0cn 10032 |
. . . . . 6
⊢ 0 ∈
ℂ |
| 31 | | fvconst2g 6467 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 ∈
ℂ) → ((ℂ × {𝐴})‘0) = 𝐴) |
| 32 | 29, 30, 31 | sylancl 694 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((ℂ
× {𝐴})‘0) =
𝐴) |
| 33 | 28, 32 | eqtr3d 2658 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
((coeff‘(ℂ × {𝐴}))‘0) = 𝐴) |
| 34 | | simpr 477 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
| 35 | 34 | nn0cnd 11353 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℂ) |
| 36 | 35 | subid1d 10381 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (𝑛 − 0) = 𝑛) |
| 37 | 36 | fveq2d 6195 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
((coeff‘𝐹)‘(𝑛 − 0)) = ((coeff‘𝐹)‘𝑛)) |
| 38 | 33, 37 | oveq12d 6668 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
(((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) = (𝐴 · ((coeff‘𝐹)‘𝑛))) |
| 39 | 5 | ad2antlr 763 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝐹 ∈
(Poly‘ℂ)) |
| 40 | 26, 16 | coemul 24008 |
. . . . 5
⊢
(((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝐹 ∈ (Poly‘ℂ)
∧ 𝑛 ∈
ℕ0) → ((coeff‘((ℂ × {𝐴}) ∘𝑓 ·
𝐹))‘𝑛) = Σ𝑘 ∈ (0...𝑛)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛 − 𝑘)))) |
| 41 | 25, 39, 34, 40 | syl3anc 1326 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
((coeff‘((ℂ × {𝐴}) ∘𝑓 ·
𝐹))‘𝑛) = Σ𝑘 ∈ (0...𝑛)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛 − 𝑘)))) |
| 42 | | nn0uz 11722 |
. . . . . . 7
⊢
ℕ0 = (ℤ≥‘0) |
| 43 | 34, 42 | syl6eleq 2711 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
(ℤ≥‘0)) |
| 44 | | fzss2 12381 |
. . . . . 6
⊢ (𝑛 ∈
(ℤ≥‘0) → (0...0) ⊆ (0...𝑛)) |
| 45 | 43, 44 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (0...0)
⊆ (0...𝑛)) |
| 46 | | elfz1eq 12352 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...0) → 𝑘 = 0) |
| 47 | 46 | adantl 482 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) → 𝑘 = 0) |
| 48 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑘 = 0 →
((coeff‘(ℂ × {𝐴}))‘𝑘) = ((coeff‘(ℂ × {𝐴}))‘0)) |
| 49 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑘 = 0 → (𝑛 − 𝑘) = (𝑛 − 0)) |
| 50 | 49 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑘 = 0 → ((coeff‘𝐹)‘(𝑛 − 𝑘)) = ((coeff‘𝐹)‘(𝑛 − 0))) |
| 51 | 48, 50 | oveq12d 6668 |
. . . . . . 7
⊢ (𝑘 = 0 →
(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛 − 𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) ·
((coeff‘𝐹)‘(𝑛 − 0)))) |
| 52 | 47, 51 | syl 17 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) →
(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛 − 𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) ·
((coeff‘𝐹)‘(𝑛 − 0)))) |
| 53 | 18 | ffvelrnda 6359 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
((coeff‘𝐹)‘𝑛) ∈ ℂ) |
| 54 | 29, 53 | mulcld 10060 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (𝐴 · ((coeff‘𝐹)‘𝑛)) ∈ ℂ) |
| 55 | 38, 54 | eqeltrd 2701 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
(((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) ∈
ℂ) |
| 56 | 55 | adantr 481 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) →
(((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) ∈
ℂ) |
| 57 | 52, 56 | eqeltrd 2701 |
. . . . 5
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...0)) →
(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛 − 𝑘))) ∈ ℂ) |
| 58 | | eldifn 3733 |
. . . . . . . . 9
⊢ (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → ¬ 𝑘 ∈
(0...0)) |
| 59 | 58 | adantl 482 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → ¬ 𝑘 ∈
(0...0)) |
| 60 | | eldifi 3732 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → 𝑘 ∈ (0...𝑛)) |
| 61 | | elfznn0 12433 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) |
| 62 | 60, 61 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → 𝑘 ∈ ℕ0) |
| 63 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(deg‘(ℂ × {𝐴})) = (deg‘(ℂ × {𝐴})) |
| 64 | 26, 63 | dgrub 23990 |
. . . . . . . . . . . . 13
⊢
(((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝑘 ∈ ℕ0
∧ ((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0) → 𝑘 ≤ (deg‘(ℂ × {𝐴}))) |
| 65 | 64 | 3expia 1267 |
. . . . . . . . . . . 12
⊢
(((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ 𝑘 ∈ ℕ0)
→ (((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(ℂ × {𝐴})))) |
| 66 | 25, 62, 65 | syl2an 494 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) →
(((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 ≤ (deg‘(ℂ × {𝐴})))) |
| 67 | | 0dgr 24001 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ →
(deg‘(ℂ × {𝐴})) = 0) |
| 68 | 67 | ad3antrrr 766 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) →
(deg‘(ℂ × {𝐴})) = 0) |
| 69 | 68 | breq2d 4665 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (𝑘 ≤ (deg‘(ℂ
× {𝐴})) ↔ 𝑘 ≤ 0)) |
| 70 | 62 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → 𝑘 ∈ ℕ0) |
| 71 | | nn0le0eq0 11321 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ (𝑘 ≤ 0 ↔
𝑘 = 0)) |
| 72 | 70, 71 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (𝑘 ≤ 0 ↔ 𝑘 = 0)) |
| 73 | 69, 72 | bitrd 268 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (𝑘 ≤ (deg‘(ℂ
× {𝐴})) ↔ 𝑘 = 0)) |
| 74 | 66, 73 | sylibd 229 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) →
(((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 = 0)) |
| 75 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑘 = 0 → 𝑘 = 0) |
| 76 | | 0z 11388 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℤ |
| 77 | | elfz3 12351 |
. . . . . . . . . . . 12
⊢ (0 ∈
ℤ → 0 ∈ (0...0)) |
| 78 | 76, 77 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 0 ∈
(0...0) |
| 79 | 75, 78 | syl6eqel 2709 |
. . . . . . . . . 10
⊢ (𝑘 = 0 → 𝑘 ∈ (0...0)) |
| 80 | 74, 79 | syl6 35 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) →
(((coeff‘(ℂ × {𝐴}))‘𝑘) ≠ 0 → 𝑘 ∈ (0...0))) |
| 81 | 80 | necon1bd 2812 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (¬ 𝑘 ∈ (0...0) →
((coeff‘(ℂ × {𝐴}))‘𝑘) = 0)) |
| 82 | 59, 81 | mpd 15 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) →
((coeff‘(ℂ × {𝐴}))‘𝑘) = 0) |
| 83 | 82 | oveq1d 6665 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) →
(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛 − 𝑘))) = (0 · ((coeff‘𝐹)‘(𝑛 − 𝑘)))) |
| 84 | 18 | adantr 481 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
(coeff‘𝐹):ℕ0⟶ℂ) |
| 85 | | fznn0sub 12373 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝑛) → (𝑛 − 𝑘) ∈
ℕ0) |
| 86 | 60, 85 | syl 17 |
. . . . . . . 8
⊢ (𝑘 ∈ ((0...𝑛) ∖ (0...0)) → (𝑛 − 𝑘) ∈
ℕ0) |
| 87 | | ffvelrn 6357 |
. . . . . . . 8
⊢
(((coeff‘𝐹):ℕ0⟶ℂ ∧
(𝑛 − 𝑘) ∈ ℕ0)
→ ((coeff‘𝐹)‘(𝑛 − 𝑘)) ∈ ℂ) |
| 88 | 84, 86, 87 | syl2an 494 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) →
((coeff‘𝐹)‘(𝑛 − 𝑘)) ∈ ℂ) |
| 89 | 88 | mul02d 10234 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) → (0 ·
((coeff‘𝐹)‘(𝑛 − 𝑘))) = 0) |
| 90 | 83, 89 | eqtrd 2656 |
. . . . 5
⊢ ((((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ ((0...𝑛) ∖ (0...0))) →
(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛 − 𝑘))) = 0) |
| 91 | | fzfid 12772 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
(0...𝑛) ∈
Fin) |
| 92 | 45, 57, 90, 91 | fsumss 14456 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
Σ𝑘 ∈
(0...0)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛 − 𝑘))) = Σ𝑘 ∈ (0...𝑛)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛 − 𝑘)))) |
| 93 | 51 | fsum1 14476 |
. . . . 5
⊢ ((0
∈ ℤ ∧ (((coeff‘(ℂ × {𝐴}))‘0) · ((coeff‘𝐹)‘(𝑛 − 0))) ∈ ℂ) →
Σ𝑘 ∈
(0...0)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛 − 𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) ·
((coeff‘𝐹)‘(𝑛 − 0)))) |
| 94 | 76, 55, 93 | sylancr 695 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
Σ𝑘 ∈
(0...0)(((coeff‘(ℂ × {𝐴}))‘𝑘) · ((coeff‘𝐹)‘(𝑛 − 𝑘))) = (((coeff‘(ℂ × {𝐴}))‘0) ·
((coeff‘𝐹)‘(𝑛 − 0)))) |
| 95 | 41, 92, 94 | 3eqtr2d 2662 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
((coeff‘((ℂ × {𝐴}) ∘𝑓 ·
𝐹))‘𝑛) = (((coeff‘(ℂ
× {𝐴}))‘0)
· ((coeff‘𝐹)‘(𝑛 − 0)))) |
| 96 | | simpl 473 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐴 ∈ ℂ) |
| 97 | | eqidd 2623 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
((coeff‘𝐹)‘𝑛) = ((coeff‘𝐹)‘𝑛)) |
| 98 | 22, 96, 20, 97 | ofc1 6920 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
(((ℕ0 × {𝐴}) ∘𝑓 ·
(coeff‘𝐹))‘𝑛) = (𝐴 · ((coeff‘𝐹)‘𝑛))) |
| 99 | 38, 95, 98 | 3eqtr4d 2666 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) →
((coeff‘((ℂ × {𝐴}) ∘𝑓 ·
𝐹))‘𝑛) = (((ℕ0
× {𝐴})
∘𝑓 · (coeff‘𝐹))‘𝑛)) |
| 100 | 11, 24, 99 | eqfnfvd 6314 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘((ℂ
× {𝐴})
∘𝑓 · 𝐹)) = ((ℕ0 × {𝐴}) ∘𝑓
· (coeff‘𝐹))) |