MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshlem4 Structured version   Visualization version   GIF version

Theorem crctcshlem4 26712
Description: Lemma for crctcsh 26716. (Contributed by AV, 10-Mar-2021.)
Hypotheses
Ref Expression
crctcsh.v 𝑉 = (Vtx‘𝐺)
crctcsh.i 𝐼 = (iEdg‘𝐺)
crctcsh.d (𝜑𝐹(Circuits‘𝐺)𝑃)
crctcsh.n 𝑁 = (#‘𝐹)
crctcsh.s (𝜑𝑆 ∈ (0..^𝑁))
crctcsh.h 𝐻 = (𝐹 cyclShift 𝑆)
crctcsh.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
Assertion
Ref Expression
crctcshlem4 ((𝜑𝑆 = 0) → (𝐻 = 𝐹𝑄 = 𝑃))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝑄(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem crctcshlem4
StepHypRef Expression
1 crctcsh.h . . 3 𝐻 = (𝐹 cyclShift 𝑆)
2 oveq2 6658 . . . 4 (𝑆 = 0 → (𝐹 cyclShift 𝑆) = (𝐹 cyclShift 0))
3 crctcsh.d . . . . . 6 (𝜑𝐹(Circuits‘𝐺)𝑃)
4 crctiswlk 26691 . . . . . 6 (𝐹(Circuits‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
5 crctcsh.i . . . . . . 7 𝐼 = (iEdg‘𝐺)
65wlkf 26510 . . . . . 6 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
73, 4, 63syl 18 . . . . 5 (𝜑𝐹 ∈ Word dom 𝐼)
8 cshw0 13540 . . . . 5 (𝐹 ∈ Word dom 𝐼 → (𝐹 cyclShift 0) = 𝐹)
97, 8syl 17 . . . 4 (𝜑 → (𝐹 cyclShift 0) = 𝐹)
102, 9sylan9eqr 2678 . . 3 ((𝜑𝑆 = 0) → (𝐹 cyclShift 𝑆) = 𝐹)
111, 10syl5eq 2668 . 2 ((𝜑𝑆 = 0) → 𝐻 = 𝐹)
12 crctcsh.q . . 3 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
13 oveq2 6658 . . . . . . . . 9 (𝑆 = 0 → (𝑁𝑆) = (𝑁 − 0))
14 crctcsh.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
15 crctcsh.n . . . . . . . . . . . 12 𝑁 = (#‘𝐹)
1614, 5, 3, 15crctcshlem1 26709 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
1716nn0cnd 11353 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
1817subid1d 10381 . . . . . . . . 9 (𝜑 → (𝑁 − 0) = 𝑁)
1913, 18sylan9eqr 2678 . . . . . . . 8 ((𝜑𝑆 = 0) → (𝑁𝑆) = 𝑁)
2019breq2d 4665 . . . . . . 7 ((𝜑𝑆 = 0) → (𝑥 ≤ (𝑁𝑆) ↔ 𝑥𝑁))
2120adantr 481 . . . . . 6 (((𝜑𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → (𝑥 ≤ (𝑁𝑆) ↔ 𝑥𝑁))
22 oveq2 6658 . . . . . . . . 9 (𝑆 = 0 → (𝑥 + 𝑆) = (𝑥 + 0))
2322adantl 482 . . . . . . . 8 ((𝜑𝑆 = 0) → (𝑥 + 𝑆) = (𝑥 + 0))
24 elfzelz 12342 . . . . . . . . . 10 (𝑥 ∈ (0...𝑁) → 𝑥 ∈ ℤ)
2524zcnd 11483 . . . . . . . . 9 (𝑥 ∈ (0...𝑁) → 𝑥 ∈ ℂ)
2625addid1d 10236 . . . . . . . 8 (𝑥 ∈ (0...𝑁) → (𝑥 + 0) = 𝑥)
2723, 26sylan9eq 2676 . . . . . . 7 (((𝜑𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → (𝑥 + 𝑆) = 𝑥)
2827fveq2d 6195 . . . . . 6 (((𝜑𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → (𝑃‘(𝑥 + 𝑆)) = (𝑃𝑥))
2927oveq1d 6665 . . . . . . 7 (((𝜑𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → ((𝑥 + 𝑆) − 𝑁) = (𝑥𝑁))
3029fveq2d 6195 . . . . . 6 (((𝜑𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘(𝑥𝑁)))
3121, 28, 30ifbieq12d 4113 . . . . 5 (((𝜑𝑆 = 0) ∧ 𝑥 ∈ (0...𝑁)) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁))))
3231mpteq2dva 4744 . . . 4 ((𝜑𝑆 = 0) → (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) = (𝑥 ∈ (0...𝑁) ↦ if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁)))))
33 elfzle2 12345 . . . . . . . . 9 (𝑥 ∈ (0...𝑁) → 𝑥𝑁)
3433adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (0...𝑁)) → 𝑥𝑁)
3534iftrued 4094 . . . . . . 7 ((𝜑𝑥 ∈ (0...𝑁)) → if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁))) = (𝑃𝑥))
3635mpteq2dva 4744 . . . . . 6 (𝜑 → (𝑥 ∈ (0...𝑁) ↦ if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁)))) = (𝑥 ∈ (0...𝑁) ↦ (𝑃𝑥)))
3714wlkp 26512 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(#‘𝐹))⟶𝑉)
383, 4, 373syl 18 . . . . . . 7 (𝜑𝑃:(0...(#‘𝐹))⟶𝑉)
39 ffn 6045 . . . . . . . . . . 11 (𝑃:(0...(#‘𝐹))⟶𝑉𝑃 Fn (0...(#‘𝐹)))
4015eqcomi 2631 . . . . . . . . . . . . 13 (#‘𝐹) = 𝑁
4140oveq2i 6661 . . . . . . . . . . . 12 (0...(#‘𝐹)) = (0...𝑁)
4241fneq2i 5986 . . . . . . . . . . 11 (𝑃 Fn (0...(#‘𝐹)) ↔ 𝑃 Fn (0...𝑁))
4339, 42sylib 208 . . . . . . . . . 10 (𝑃:(0...(#‘𝐹))⟶𝑉𝑃 Fn (0...𝑁))
4443adantl 482 . . . . . . . . 9 ((𝜑𝑃:(0...(#‘𝐹))⟶𝑉) → 𝑃 Fn (0...𝑁))
45 dffn5 6241 . . . . . . . . 9 (𝑃 Fn (0...𝑁) ↔ 𝑃 = (𝑥 ∈ (0...𝑁) ↦ (𝑃𝑥)))
4644, 45sylib 208 . . . . . . . 8 ((𝜑𝑃:(0...(#‘𝐹))⟶𝑉) → 𝑃 = (𝑥 ∈ (0...𝑁) ↦ (𝑃𝑥)))
4746eqcomd 2628 . . . . . . 7 ((𝜑𝑃:(0...(#‘𝐹))⟶𝑉) → (𝑥 ∈ (0...𝑁) ↦ (𝑃𝑥)) = 𝑃)
4838, 47mpdan 702 . . . . . 6 (𝜑 → (𝑥 ∈ (0...𝑁) ↦ (𝑃𝑥)) = 𝑃)
4936, 48eqtrd 2656 . . . . 5 (𝜑 → (𝑥 ∈ (0...𝑁) ↦ if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁)))) = 𝑃)
5049adantr 481 . . . 4 ((𝜑𝑆 = 0) → (𝑥 ∈ (0...𝑁) ↦ if(𝑥𝑁, (𝑃𝑥), (𝑃‘(𝑥𝑁)))) = 𝑃)
5132, 50eqtrd 2656 . . 3 ((𝜑𝑆 = 0) → (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) = 𝑃)
5212, 51syl5eq 2668 . 2 ((𝜑𝑆 = 0) → 𝑄 = 𝑃)
5311, 52jca 554 1 ((𝜑𝑆 = 0) → (𝐻 = 𝐹𝑄 = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  ifcif 4086   class class class wbr 4653  cmpt 4729  dom cdm 5114   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  0cc0 9936   + caddc 9939  cle 10075  cmin 10266  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291   cyclShift ccsh 13534  Vtxcvtx 25874  iEdgciedg 25875  Walkscwlks 26492  Circuitsccrcts 26679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535  df-wlks 26495  df-trls 26589  df-crcts 26681
This theorem is referenced by:  crctcshwlk  26714  crctcsh  26716
  Copyright terms: Public domain W3C validator