MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshlem4 Structured version   Visualization version   Unicode version

Theorem crctcshlem4 26712
Description: Lemma for crctcsh 26716. (Contributed by AV, 10-Mar-2021.)
Hypotheses
Ref Expression
crctcsh.v  |-  V  =  (Vtx `  G )
crctcsh.i  |-  I  =  (iEdg `  G )
crctcsh.d  |-  ( ph  ->  F (Circuits `  G
) P )
crctcsh.n  |-  N  =  ( # `  F
)
crctcsh.s  |-  ( ph  ->  S  e.  ( 0..^ N ) )
crctcsh.h  |-  H  =  ( F cyclShift  S )
crctcsh.q  |-  Q  =  ( x  e.  ( 0 ... N ) 
|->  if ( x  <_ 
( N  -  S
) ,  ( P `
 ( x  +  S ) ) ,  ( P `  (
( x  +  S
)  -  N ) ) ) )
Assertion
Ref Expression
crctcshlem4  |-  ( (
ph  /\  S  = 
0 )  ->  ( H  =  F  /\  Q  =  P )
)
Distinct variable groups:    x, N    x, P    x, S    ph, x
Allowed substitution hints:    Q( x)    F( x)    G( x)    H( x)    I( x)    V( x)

Proof of Theorem crctcshlem4
StepHypRef Expression
1 crctcsh.h . . 3  |-  H  =  ( F cyclShift  S )
2 oveq2 6658 . . . 4  |-  ( S  =  0  ->  ( F cyclShift  S )  =  ( F cyclShift  0 ) )
3 crctcsh.d . . . . . 6  |-  ( ph  ->  F (Circuits `  G
) P )
4 crctiswlk 26691 . . . . . 6  |-  ( F (Circuits `  G ) P  ->  F (Walks `  G ) P )
5 crctcsh.i . . . . . . 7  |-  I  =  (iEdg `  G )
65wlkf 26510 . . . . . 6  |-  ( F (Walks `  G ) P  ->  F  e. Word  dom  I )
73, 4, 63syl 18 . . . . 5  |-  ( ph  ->  F  e. Word  dom  I
)
8 cshw0 13540 . . . . 5  |-  ( F  e. Word  dom  I  ->  ( F cyclShift  0 )  =  F )
97, 8syl 17 . . . 4  |-  ( ph  ->  ( F cyclShift  0 )  =  F )
102, 9sylan9eqr 2678 . . 3  |-  ( (
ph  /\  S  = 
0 )  ->  ( F cyclShift  S )  =  F )
111, 10syl5eq 2668 . 2  |-  ( (
ph  /\  S  = 
0 )  ->  H  =  F )
12 crctcsh.q . . 3  |-  Q  =  ( x  e.  ( 0 ... N ) 
|->  if ( x  <_ 
( N  -  S
) ,  ( P `
 ( x  +  S ) ) ,  ( P `  (
( x  +  S
)  -  N ) ) ) )
13 oveq2 6658 . . . . . . . . 9  |-  ( S  =  0  ->  ( N  -  S )  =  ( N  - 
0 ) )
14 crctcsh.v . . . . . . . . . . . 12  |-  V  =  (Vtx `  G )
15 crctcsh.n . . . . . . . . . . . 12  |-  N  =  ( # `  F
)
1614, 5, 3, 15crctcshlem1 26709 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN0 )
1716nn0cnd 11353 . . . . . . . . . 10  |-  ( ph  ->  N  e.  CC )
1817subid1d 10381 . . . . . . . . 9  |-  ( ph  ->  ( N  -  0 )  =  N )
1913, 18sylan9eqr 2678 . . . . . . . 8  |-  ( (
ph  /\  S  = 
0 )  ->  ( N  -  S )  =  N )
2019breq2d 4665 . . . . . . 7  |-  ( (
ph  /\  S  = 
0 )  ->  (
x  <_  ( N  -  S )  <->  x  <_  N ) )
2120adantr 481 . . . . . 6  |-  ( ( ( ph  /\  S  =  0 )  /\  x  e.  ( 0 ... N ) )  ->  ( x  <_ 
( N  -  S
)  <->  x  <_  N ) )
22 oveq2 6658 . . . . . . . . 9  |-  ( S  =  0  ->  (
x  +  S )  =  ( x  + 
0 ) )
2322adantl 482 . . . . . . . 8  |-  ( (
ph  /\  S  = 
0 )  ->  (
x  +  S )  =  ( x  + 
0 ) )
24 elfzelz 12342 . . . . . . . . . 10  |-  ( x  e.  ( 0 ... N )  ->  x  e.  ZZ )
2524zcnd 11483 . . . . . . . . 9  |-  ( x  e.  ( 0 ... N )  ->  x  e.  CC )
2625addid1d 10236 . . . . . . . 8  |-  ( x  e.  ( 0 ... N )  ->  (
x  +  0 )  =  x )
2723, 26sylan9eq 2676 . . . . . . 7  |-  ( ( ( ph  /\  S  =  0 )  /\  x  e.  ( 0 ... N ) )  ->  ( x  +  S )  =  x )
2827fveq2d 6195 . . . . . 6  |-  ( ( ( ph  /\  S  =  0 )  /\  x  e.  ( 0 ... N ) )  ->  ( P `  ( x  +  S
) )  =  ( P `  x ) )
2927oveq1d 6665 . . . . . . 7  |-  ( ( ( ph  /\  S  =  0 )  /\  x  e.  ( 0 ... N ) )  ->  ( ( x  +  S )  -  N )  =  ( x  -  N ) )
3029fveq2d 6195 . . . . . 6  |-  ( ( ( ph  /\  S  =  0 )  /\  x  e.  ( 0 ... N ) )  ->  ( P `  ( ( x  +  S )  -  N
) )  =  ( P `  ( x  -  N ) ) )
3121, 28, 30ifbieq12d 4113 . . . . 5  |-  ( ( ( ph  /\  S  =  0 )  /\  x  e.  ( 0 ... N ) )  ->  if ( x  <_  ( N  -  S ) ,  ( P `  ( x  +  S ) ) ,  ( P `  ( ( x  +  S )  -  N
) ) )  =  if ( x  <_  N ,  ( P `  x ) ,  ( P `  ( x  -  N ) ) ) )
3231mpteq2dva 4744 . . . 4  |-  ( (
ph  /\  S  = 
0 )  ->  (
x  e.  ( 0 ... N )  |->  if ( x  <_  ( N  -  S ) ,  ( P `  ( x  +  S
) ) ,  ( P `  ( ( x  +  S )  -  N ) ) ) )  =  ( x  e.  ( 0 ... N )  |->  if ( x  <_  N ,  ( P `  x ) ,  ( P `  ( x  -  N ) ) ) ) )
33 elfzle2 12345 . . . . . . . . 9  |-  ( x  e.  ( 0 ... N )  ->  x  <_  N )
3433adantl 482 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 ... N
) )  ->  x  <_  N )
3534iftrued 4094 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 ... N
) )  ->  if ( x  <_  N , 
( P `  x
) ,  ( P `
 ( x  -  N ) ) )  =  ( P `  x ) )
3635mpteq2dva 4744 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 0 ... N ) 
|->  if ( x  <_  N ,  ( P `  x ) ,  ( P `  ( x  -  N ) ) ) )  =  ( x  e.  ( 0 ... N )  |->  ( P `  x ) ) )
3714wlkp 26512 . . . . . . . 8  |-  ( F (Walks `  G ) P  ->  P : ( 0 ... ( # `  F ) ) --> V )
383, 4, 373syl 18 . . . . . . 7  |-  ( ph  ->  P : ( 0 ... ( # `  F
) ) --> V )
39 ffn 6045 . . . . . . . . . . 11  |-  ( P : ( 0 ... ( # `  F
) ) --> V  ->  P  Fn  ( 0 ... ( # `  F
) ) )
4015eqcomi 2631 . . . . . . . . . . . . 13  |-  ( # `  F )  =  N
4140oveq2i 6661 . . . . . . . . . . . 12  |-  ( 0 ... ( # `  F
) )  =  ( 0 ... N )
4241fneq2i 5986 . . . . . . . . . . 11  |-  ( P  Fn  ( 0 ... ( # `  F
) )  <->  P  Fn  ( 0 ... N
) )
4339, 42sylib 208 . . . . . . . . . 10  |-  ( P : ( 0 ... ( # `  F
) ) --> V  ->  P  Fn  ( 0 ... N ) )
4443adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  P :
( 0 ... ( # `
 F ) ) --> V )  ->  P  Fn  ( 0 ... N
) )
45 dffn5 6241 . . . . . . . . 9  |-  ( P  Fn  ( 0 ... N )  <->  P  =  ( x  e.  (
0 ... N )  |->  ( P `  x ) ) )
4644, 45sylib 208 . . . . . . . 8  |-  ( (
ph  /\  P :
( 0 ... ( # `
 F ) ) --> V )  ->  P  =  ( x  e.  ( 0 ... N
)  |->  ( P `  x ) ) )
4746eqcomd 2628 . . . . . . 7  |-  ( (
ph  /\  P :
( 0 ... ( # `
 F ) ) --> V )  ->  (
x  e.  ( 0 ... N )  |->  ( P `  x ) )  =  P )
4838, 47mpdan 702 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 0 ... N ) 
|->  ( P `  x
) )  =  P )
4936, 48eqtrd 2656 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 ... N ) 
|->  if ( x  <_  N ,  ( P `  x ) ,  ( P `  ( x  -  N ) ) ) )  =  P )
5049adantr 481 . . . 4  |-  ( (
ph  /\  S  = 
0 )  ->  (
x  e.  ( 0 ... N )  |->  if ( x  <_  N ,  ( P `  x ) ,  ( P `  ( x  -  N ) ) ) )  =  P )
5132, 50eqtrd 2656 . . 3  |-  ( (
ph  /\  S  = 
0 )  ->  (
x  e.  ( 0 ... N )  |->  if ( x  <_  ( N  -  S ) ,  ( P `  ( x  +  S
) ) ,  ( P `  ( ( x  +  S )  -  N ) ) ) )  =  P )
5212, 51syl5eq 2668 . 2  |-  ( (
ph  /\  S  = 
0 )  ->  Q  =  P )
5311, 52jca 554 1  |-  ( (
ph  /\  S  = 
0 )  ->  ( H  =  F  /\  Q  =  P )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936    + caddc 9939    <_ cle 10075    - cmin 10266   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   cyclShift ccsh 13534  Vtxcvtx 25874  iEdgciedg 25875  Walkscwlks 26492  Circuitsccrcts 26679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535  df-wlks 26495  df-trls 26589  df-crcts 26681
This theorem is referenced by:  crctcshwlk  26714  crctcsh  26716
  Copyright terms: Public domain W3C validator