MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdcl Structured version   Visualization version   GIF version

Theorem swrdcl 13419
Description: Closure of the subword extractor. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
swrdcl (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝐹, 𝐿⟩) ∈ Word 𝐴)

Proof of Theorem swrdcl
Dummy variables 𝑠 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . 2 ((𝑆 substr ⟨𝐹, 𝐿⟩) = ∅ → ((𝑆 substr ⟨𝐹, 𝐿⟩) ∈ Word 𝐴 ↔ ∅ ∈ Word 𝐴))
2 n0 3931 . . . 4 ((𝑆 substr ⟨𝐹, 𝐿⟩) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑆 substr ⟨𝐹, 𝐿⟩))
3 df-substr 13303 . . . . . . 7 substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅))
43elmpt2cl2 6878 . . . . . 6 (𝑥 ∈ (𝑆 substr ⟨𝐹, 𝐿⟩) → ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ))
5 opelxp 5146 . . . . . 6 (⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ) ↔ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
64, 5sylib 208 . . . . 5 (𝑥 ∈ (𝑆 substr ⟨𝐹, 𝐿⟩) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
76exlimiv 1858 . . . 4 (∃𝑥 𝑥 ∈ (𝑆 substr ⟨𝐹, 𝐿⟩) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
82, 7sylbi 207 . . 3 ((𝑆 substr ⟨𝐹, 𝐿⟩) ≠ ∅ → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
9 swrdval 13417 . . . . 5 ((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅))
10 wrdf 13310 . . . . . . . . . . 11 (𝑆 ∈ Word 𝐴𝑆:(0..^(#‘𝑆))⟶𝐴)
11103ad2ant1 1082 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝑆:(0..^(#‘𝑆))⟶𝐴)
1211ad2antrr 762 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → 𝑆:(0..^(#‘𝑆))⟶𝐴)
13 simplr 792 . . . . . . . . . . 11 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → (𝐹..^𝐿) ⊆ dom 𝑆)
14 simpr 477 . . . . . . . . . . . 12 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → 𝑥 ∈ (0..^(𝐿𝐹)))
15 simpll3 1102 . . . . . . . . . . . 12 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → 𝐿 ∈ ℤ)
16 simpll2 1101 . . . . . . . . . . . 12 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → 𝐹 ∈ ℤ)
17 fzoaddel2 12523 . . . . . . . . . . . 12 ((𝑥 ∈ (0..^(𝐿𝐹)) ∧ 𝐿 ∈ ℤ ∧ 𝐹 ∈ ℤ) → (𝑥 + 𝐹) ∈ (𝐹..^𝐿))
1814, 15, 16, 17syl3anc 1326 . . . . . . . . . . 11 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → (𝑥 + 𝐹) ∈ (𝐹..^𝐿))
1913, 18sseldd 3604 . . . . . . . . . 10 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → (𝑥 + 𝐹) ∈ dom 𝑆)
20 fdm 6051 . . . . . . . . . . 11 (𝑆:(0..^(#‘𝑆))⟶𝐴 → dom 𝑆 = (0..^(#‘𝑆)))
2112, 20syl 17 . . . . . . . . . 10 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → dom 𝑆 = (0..^(#‘𝑆)))
2219, 21eleqtrd 2703 . . . . . . . . 9 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → (𝑥 + 𝐹) ∈ (0..^(#‘𝑆)))
2312, 22ffvelrnd 6360 . . . . . . . 8 ((((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) ∧ 𝑥 ∈ (0..^(𝐿𝐹))) → (𝑆‘(𝑥 + 𝐹)) ∈ 𝐴)
24 eqid 2622 . . . . . . . 8 (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) = (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹)))
2523, 24fmptd 6385 . . . . . . 7 (((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))):(0..^(𝐿𝐹))⟶𝐴)
26 iswrdi 13309 . . . . . . 7 ((𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))):(0..^(𝐿𝐹))⟶𝐴 → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) ∈ Word 𝐴)
2725, 26syl 17 . . . . . 6 (((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐹..^𝐿) ⊆ dom 𝑆) → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) ∈ Word 𝐴)
28 wrd0 13330 . . . . . . 7 ∅ ∈ Word 𝐴
2928a1i 11 . . . . . 6 (((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ ¬ (𝐹..^𝐿) ⊆ dom 𝑆) → ∅ ∈ Word 𝐴)
3027, 29ifclda 4120 . . . . 5 ((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅) ∈ Word 𝐴)
319, 30eqeltrd 2701 . . . 4 ((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) ∈ Word 𝐴)
32313expb 1266 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑆 substr ⟨𝐹, 𝐿⟩) ∈ Word 𝐴)
338, 32sylan2 491 . 2 ((𝑆 ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝐹, 𝐿⟩) ≠ ∅) → (𝑆 substr ⟨𝐹, 𝐿⟩) ∈ Word 𝐴)
3428a1i 11 . 2 (𝑆 ∈ Word 𝐴 → ∅ ∈ Word 𝐴)
351, 33, 34pm2.61ne 2879 1 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝐹, 𝐿⟩) ∈ Word 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  Vcvv 3200  wss 3574  c0 3915  ifcif 4086  cop 4183  cmpt 4729   × cxp 5112  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  0cc0 9936   + caddc 9939  cmin 10266  cz 11377  ..^cfzo 12465  #chash 13117  Word cword 13291   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-substr 13303
This theorem is referenced by:  swrdf  13425  addlenswrd  13438  swrd0fvlsw  13443  swrdeq  13444  swrdspsleq  13449  swrds1  13451  ccatswrd  13456  swrdccat2  13458  swrdswrd  13460  lenrevcctswrd  13467  wrdind  13476  wrd2ind  13477  swrdccatin12  13491  swrdccat  13493  swrdccat3a  13494  swrdccat3blem  13495  splcl  13503  spllen  13505  splfv1  13506  splfv2a  13507  splval2  13508  cshwcl  13544  cshwlen  13545  cshwidxmod  13549  gsumspl  17381  psgnunilem5  17914  psgnunilem2  17915  efgsres  18151  efgredleme  18156  efgredlemc  18158  efgcpbllemb  18168  frgpuplem  18185  wwlksm1edg  26767  wwlksnred  26787  wwlksnextwrd  26792  clwlkclwwlk  26903  clwwlkinwwlk  26905  clwwlksf  26915  wwlksubclwwlks  26925  clwlksfclwwlk  26962  wrdsplex  30618  signsvtn0  30647  signstfveq0  30654  pfxcl  41386  ccatpfx  41409  pfxswrd  41413  lenrevpfxcctswrd  41419  pfxccatin12  41425
  Copyright terms: Public domain W3C validator