MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrsize Structured version   Visualization version   Unicode version

Theorem cusgrsize 26350
Description: The size of a finite complete simple graph with  n vertices ( n  e.  NN0) is  ( n  _C  2 ) ("
n choose 2") resp.  ( (
( n  -  1 ) * n )  /  2 ), see definition in section I.1 of [Bollobas] p. 3 . (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 10-Nov-2020.)
Hypotheses
Ref Expression
cusgrsizeindb0.v  |-  V  =  (Vtx `  G )
cusgrsizeindb0.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
cusgrsize  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin )  ->  ( # `
 E )  =  ( ( # `  V
)  _C  2 ) )

Proof of Theorem cusgrsize
Dummy variables  e 
f  n  v  c  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cusgrsizeindb0.e . . . . 5  |-  E  =  (Edg `  G )
2 edgval 25941 . . . . 5  |-  (Edg `  G )  =  ran  (iEdg `  G )
31, 2eqtri 2644 . . . 4  |-  E  =  ran  (iEdg `  G
)
43a1i 11 . . 3  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin )  ->  E  =  ran  (iEdg `  G
) )
54fveq2d 6195 . 2  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin )  ->  ( # `
 E )  =  ( # `  ran  (iEdg `  G ) ) )
6 cusgrsizeindb0.v . . . . 5  |-  V  =  (Vtx `  G )
76opeq1i 4405 . . . 4  |-  <. V , 
(iEdg `  G ) >.  =  <. (Vtx `  G
) ,  (iEdg `  G ) >.
8 cusgrop 26334 . . . 4  |-  ( G  e. ComplUSGraph  ->  <. (Vtx `  G
) ,  (iEdg `  G ) >.  e. ComplUSGraph )
97, 8syl5eqel 2705 . . 3  |-  ( G  e. ComplUSGraph  ->  <. V ,  (iEdg `  G ) >.  e. ComplUSGraph )
10 fvex 6201 . . . 4  |-  (iEdg `  G )  e.  _V
11 fvex 6201 . . . . 5  |-  (Edg `  <. v ,  e >.
)  e.  _V
12 rabexg 4812 . . . . . 6  |-  ( (Edg
`  <. v ,  e
>. )  e.  _V  ->  { c  e.  (Edg
`  <. v ,  e
>. )  |  n  e/  c }  e.  _V )
1312resiexd 6480 . . . . 5  |-  ( (Edg
`  <. v ,  e
>. )  e.  _V  ->  (  _I  |`  { c  e.  (Edg `  <. v ,  e >. )  |  n  e/  c } )  e.  _V )
1411, 13ax-mp 5 . . . 4  |-  (  _I  |`  { c  e.  (Edg
`  <. v ,  e
>. )  |  n  e/  c } )  e. 
_V
15 rneq 5351 . . . . . 6  |-  ( e  =  (iEdg `  G
)  ->  ran  e  =  ran  (iEdg `  G
) )
1615fveq2d 6195 . . . . 5  |-  ( e  =  (iEdg `  G
)  ->  ( # `  ran  e )  =  (
# `  ran  (iEdg `  G ) ) )
17 fveq2 6191 . . . . . 6  |-  ( v  =  V  ->  ( # `
 v )  =  ( # `  V
) )
1817oveq1d 6665 . . . . 5  |-  ( v  =  V  ->  (
( # `  v )  _C  2 )  =  ( ( # `  V
)  _C  2 ) )
1916, 18eqeqan12rd 2640 . . . 4  |-  ( ( v  =  V  /\  e  =  (iEdg `  G
) )  ->  (
( # `  ran  e
)  =  ( (
# `  v )  _C  2 )  <->  ( # `  ran  (iEdg `  G ) )  =  ( ( # `  V )  _C  2
) ) )
20 rneq 5351 . . . . . 6  |-  ( e  =  f  ->  ran  e  =  ran  f )
2120fveq2d 6195 . . . . 5  |-  ( e  =  f  ->  ( # `
 ran  e )  =  ( # `  ran  f ) )
22 fveq2 6191 . . . . . 6  |-  ( v  =  w  ->  ( # `
 v )  =  ( # `  w
) )
2322oveq1d 6665 . . . . 5  |-  ( v  =  w  ->  (
( # `  v )  _C  2 )  =  ( ( # `  w
)  _C  2 ) )
2421, 23eqeqan12rd 2640 . . . 4  |-  ( ( v  =  w  /\  e  =  f )  ->  ( ( # `  ran  e )  =  ( ( # `  v
)  _C  2 )  <-> 
( # `  ran  f
)  =  ( (
# `  w )  _C  2 ) ) )
25 vex 3203 . . . . . . 7  |-  v  e. 
_V
26 vex 3203 . . . . . . 7  |-  e  e. 
_V
2725, 26opvtxfvi 25889 . . . . . 6  |-  (Vtx `  <. v ,  e >.
)  =  v
2827eqcomi 2631 . . . . 5  |-  v  =  (Vtx `  <. v ,  e >. )
29 eqid 2622 . . . . 5  |-  (Edg `  <. v ,  e >.
)  =  (Edg `  <. v ,  e >.
)
30 eqid 2622 . . . . 5  |-  { c  e.  (Edg `  <. v ,  e >. )  |  n  e/  c }  =  { c  e.  (Edg `  <. v ,  e >. )  |  n  e/  c }
31 eqid 2622 . . . . 5  |-  <. (
v  \  { n } ) ,  (  _I  |`  { c  e.  (Edg `  <. v ,  e >. )  |  n  e/  c } )
>.  =  <. ( v 
\  { n }
) ,  (  _I  |`  { c  e.  (Edg
`  <. v ,  e
>. )  |  n  e/  c } ) >.
3228, 29, 30, 31cusgrres 26344 . . . 4  |-  ( (
<. v ,  e >.  e. ComplUSGraph  /\  n  e.  v
)  ->  <. ( v 
\  { n }
) ,  (  _I  |`  { c  e.  (Edg
`  <. v ,  e
>. )  |  n  e/  c } ) >.  e. ComplUSGraph )
33 rneq 5351 . . . . . . 7  |-  ( f  =  (  _I  |`  { c  e.  (Edg `  <. v ,  e >. )  |  n  e/  c } )  ->  ran  f  =  ran  (  _I  |`  { c  e.  (Edg
`  <. v ,  e
>. )  |  n  e/  c } ) )
3433fveq2d 6195 . . . . . 6  |-  ( f  =  (  _I  |`  { c  e.  (Edg `  <. v ,  e >. )  |  n  e/  c } )  ->  ( # `
 ran  f )  =  ( # `  ran  (  _I  |`  { c  e.  (Edg `  <. v ,  e >. )  |  n  e/  c } ) ) )
3534adantl 482 . . . . 5  |-  ( ( w  =  ( v 
\  { n }
)  /\  f  =  (  _I  |`  { c  e.  (Edg `  <. v ,  e >. )  |  n  e/  c } ) )  -> 
( # `  ran  f
)  =  ( # `  ran  (  _I  |`  { c  e.  (Edg `  <. v ,  e >. )  |  n  e/  c } ) ) )
36 fveq2 6191 . . . . . . 7  |-  ( w  =  ( v  \  { n } )  ->  ( # `  w
)  =  ( # `  ( v  \  {
n } ) ) )
3736adantr 481 . . . . . 6  |-  ( ( w  =  ( v 
\  { n }
)  /\  f  =  (  _I  |`  { c  e.  (Edg `  <. v ,  e >. )  |  n  e/  c } ) )  -> 
( # `  w )  =  ( # `  (
v  \  { n } ) ) )
3837oveq1d 6665 . . . . 5  |-  ( ( w  =  ( v 
\  { n }
)  /\  f  =  (  _I  |`  { c  e.  (Edg `  <. v ,  e >. )  |  n  e/  c } ) )  -> 
( ( # `  w
)  _C  2 )  =  ( ( # `  ( v  \  {
n } ) )  _C  2 ) )
3935, 38eqeq12d 2637 . . . 4  |-  ( ( w  =  ( v 
\  { n }
)  /\  f  =  (  _I  |`  { c  e.  (Edg `  <. v ,  e >. )  |  n  e/  c } ) )  -> 
( ( # `  ran  f )  =  ( ( # `  w
)  _C  2 )  <-> 
( # `  ran  (  _I  |`  { c  e.  (Edg `  <. v ,  e >. )  |  n  e/  c } ) )  =  ( (
# `  ( v  \  { n } ) )  _C  2 ) ) )
40 edgopval 25944 . . . . . . . . 9  |-  ( ( v  e.  _V  /\  e  e.  _V )  ->  (Edg `  <. v ,  e >. )  =  ran  e )
4125, 26, 40mp2an 708 . . . . . . . 8  |-  (Edg `  <. v ,  e >.
)  =  ran  e
4241a1i 11 . . . . . . 7  |-  ( (
<. v ,  e >.  e. ComplUSGraph  /\  ( # `  v
)  =  0 )  ->  (Edg `  <. v ,  e >. )  =  ran  e )
4342eqcomd 2628 . . . . . 6  |-  ( (
<. v ,  e >.  e. ComplUSGraph  /\  ( # `  v
)  =  0 )  ->  ran  e  =  (Edg `  <. v ,  e
>. ) )
4443fveq2d 6195 . . . . 5  |-  ( (
<. v ,  e >.  e. ComplUSGraph  /\  ( # `  v
)  =  0 )  ->  ( # `  ran  e )  =  (
# `  (Edg `  <. v ,  e >. )
) )
45 cusgrusgr 26315 . . . . . . 7  |-  ( <.
v ,  e >.  e. ComplUSGraph 
->  <. v ,  e
>.  e. USGraph  )
46 usgruhgr 26078 . . . . . . 7  |-  ( <.
v ,  e >.  e. USGraph  ->  <. v ,  e
>.  e. UHGraph  )
4745, 46syl 17 . . . . . 6  |-  ( <.
v ,  e >.  e. ComplUSGraph 
->  <. v ,  e
>.  e. UHGraph  )
4828, 29cusgrsizeindb0 26345 . . . . . 6  |-  ( (
<. v ,  e >.  e. UHGraph  /\  ( # `  v
)  =  0 )  ->  ( # `  (Edg ` 
<. v ,  e >.
) )  =  ( ( # `  v
)  _C  2 ) )
4947, 48sylan 488 . . . . 5  |-  ( (
<. v ,  e >.  e. ComplUSGraph  /\  ( # `  v
)  =  0 )  ->  ( # `  (Edg ` 
<. v ,  e >.
) )  =  ( ( # `  v
)  _C  2 ) )
5044, 49eqtrd 2656 . . . 4  |-  ( (
<. v ,  e >.  e. ComplUSGraph  /\  ( # `  v
)  =  0 )  ->  ( # `  ran  e )  =  ( ( # `  v
)  _C  2 ) )
51 rnresi 5479 . . . . . . . . . 10  |-  ran  (  _I  |`  { c  e.  (Edg `  <. v ,  e >. )  |  n  e/  c } )  =  { c  e.  (Edg `  <. v ,  e >. )  |  n  e/  c }
5251fveq2i 6194 . . . . . . . . 9  |-  ( # `  ran  (  _I  |`  { c  e.  (Edg `  <. v ,  e >. )  |  n  e/  c } ) )  =  ( # `  {
c  e.  (Edg `  <. v ,  e >.
)  |  n  e/  c } )
5341a1i 11 . . . . . . . . . . 11  |-  ( ( ( y  +  1 )  e.  NN0  /\  ( <. v ,  e
>.  e. ComplUSGraph  /\  ( # `  v
)  =  ( y  +  1 )  /\  n  e.  v )
)  ->  (Edg `  <. v ,  e >. )  =  ran  e )
5453rabeqdv 3194 . . . . . . . . . 10  |-  ( ( ( y  +  1 )  e.  NN0  /\  ( <. v ,  e
>.  e. ComplUSGraph  /\  ( # `  v
)  =  ( y  +  1 )  /\  n  e.  v )
)  ->  { c  e.  (Edg `  <. v ,  e >. )  |  n  e/  c }  =  { c  e.  ran  e  |  n  e/  c } )
5554fveq2d 6195 . . . . . . . . 9  |-  ( ( ( y  +  1 )  e.  NN0  /\  ( <. v ,  e
>.  e. ComplUSGraph  /\  ( # `  v
)  =  ( y  +  1 )  /\  n  e.  v )
)  ->  ( # `  {
c  e.  (Edg `  <. v ,  e >.
)  |  n  e/  c } )  =  (
# `  { c  e.  ran  e  |  n  e/  c } ) )
5652, 55syl5eq 2668 . . . . . . . 8  |-  ( ( ( y  +  1 )  e.  NN0  /\  ( <. v ,  e
>.  e. ComplUSGraph  /\  ( # `  v
)  =  ( y  +  1 )  /\  n  e.  v )
)  ->  ( # `  ran  (  _I  |`  { c  e.  (Edg `  <. v ,  e >. )  |  n  e/  c } ) )  =  ( # `  {
c  e.  ran  e  |  n  e/  c } ) )
5756eqeq1d 2624 . . . . . . 7  |-  ( ( ( y  +  1 )  e.  NN0  /\  ( <. v ,  e
>.  e. ComplUSGraph  /\  ( # `  v
)  =  ( y  +  1 )  /\  n  e.  v )
)  ->  ( ( # `
 ran  (  _I  |` 
{ c  e.  (Edg
`  <. v ,  e
>. )  |  n  e/  c } ) )  =  ( ( # `  ( v  \  {
n } ) )  _C  2 )  <->  ( # `  {
c  e.  ran  e  |  n  e/  c } )  =  ( ( # `  (
v  \  { n } ) )  _C  2 ) ) )
5857biimpd 219 . . . . . 6  |-  ( ( ( y  +  1 )  e.  NN0  /\  ( <. v ,  e
>.  e. ComplUSGraph  /\  ( # `  v
)  =  ( y  +  1 )  /\  n  e.  v )
)  ->  ( ( # `
 ran  (  _I  |` 
{ c  e.  (Edg
`  <. v ,  e
>. )  |  n  e/  c } ) )  =  ( ( # `  ( v  \  {
n } ) )  _C  2 )  -> 
( # `  { c  e.  ran  e  |  n  e/  c } )  =  ( (
# `  ( v  \  { n } ) )  _C  2 ) ) )
5958imdistani 726 . . . . 5  |-  ( ( ( ( y  +  1 )  e.  NN0  /\  ( <. v ,  e
>.  e. ComplUSGraph  /\  ( # `  v
)  =  ( y  +  1 )  /\  n  e.  v )
)  /\  ( # `  ran  (  _I  |`  { c  e.  (Edg `  <. v ,  e >. )  |  n  e/  c } ) )  =  ( ( # `  (
v  \  { n } ) )  _C  2 ) )  -> 
( ( ( y  +  1 )  e. 
NN0  /\  ( <. v ,  e >.  e. ComplUSGraph  /\  ( # `
 v )  =  ( y  +  1 )  /\  n  e.  v ) )  /\  ( # `  { c  e.  ran  e  |  n  e/  c } )  =  ( (
# `  ( v  \  { n } ) )  _C  2 ) ) )
6041eqcomi 2631 . . . . . . 7  |-  ran  e  =  (Edg `  <. v ,  e >. )
61 eqid 2622 . . . . . . 7  |-  { c  e.  ran  e  |  n  e/  c }  =  { c  e. 
ran  e  |  n  e/  c }
6228, 60, 61cusgrsize2inds 26349 . . . . . 6  |-  ( ( y  +  1 )  e.  NN0  ->  ( (
<. v ,  e >.  e. ComplUSGraph  /\  ( # `  v
)  =  ( y  +  1 )  /\  n  e.  v )  ->  ( ( # `  {
c  e.  ran  e  |  n  e/  c } )  =  ( ( # `  (
v  \  { n } ) )  _C  2 )  ->  ( # `
 ran  e )  =  ( ( # `  v )  _C  2
) ) ) )
6362imp31 448 . . . . 5  |-  ( ( ( ( y  +  1 )  e.  NN0  /\  ( <. v ,  e
>.  e. ComplUSGraph  /\  ( # `  v
)  =  ( y  +  1 )  /\  n  e.  v )
)  /\  ( # `  {
c  e.  ran  e  |  n  e/  c } )  =  ( ( # `  (
v  \  { n } ) )  _C  2 ) )  -> 
( # `  ran  e
)  =  ( (
# `  v )  _C  2 ) )
6459, 63syl 17 . . . 4  |-  ( ( ( ( y  +  1 )  e.  NN0  /\  ( <. v ,  e
>.  e. ComplUSGraph  /\  ( # `  v
)  =  ( y  +  1 )  /\  n  e.  v )
)  /\  ( # `  ran  (  _I  |`  { c  e.  (Edg `  <. v ,  e >. )  |  n  e/  c } ) )  =  ( ( # `  (
v  \  { n } ) )  _C  2 ) )  -> 
( # `  ran  e
)  =  ( (
# `  v )  _C  2 ) )
6510, 14, 19, 24, 32, 39, 50, 64opfi1ind 13284 . . 3  |-  ( (
<. V ,  (iEdg `  G ) >.  e. ComplUSGraph  /\  V  e.  Fin )  ->  ( # `
 ran  (iEdg `  G
) )  =  ( ( # `  V
)  _C  2 ) )
669, 65sylan 488 . 2  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin )  ->  ( # `
 ran  (iEdg `  G
) )  =  ( ( # `  V
)  _C  2 ) )
675, 66eqtrd 2656 1  |-  ( ( G  e. ComplUSGraph  /\  V  e. 
Fin )  ->  ( # `
 E )  =  ( ( # `  V
)  _C  2 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    e/ wnel 2897   {crab 2916   _Vcvv 3200    \ cdif 3571   {csn 4177   <.cop 4183    _I cid 5023   ran crn 5115    |` cres 5116   ` cfv 5888  (class class class)co 6650   Fincfn 7955   0cc0 9936   1c1 9937    + caddc 9939   2c2 11070   NN0cn0 11292    _C cbc 13089   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951   USGraph cusgr 26044  ComplUSGraphccusgr 26227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-fac 13061  df-bc 13090  df-hash 13118  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-fusgr 26209  df-nbgr 26228  df-uvtxa 26230  df-cplgr 26231  df-cusgr 26232
This theorem is referenced by:  fusgrmaxsize  26360
  Copyright terms: Public domain W3C validator