MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gamcvg2lem Structured version   Visualization version   GIF version

Theorem gamcvg2lem 24785
Description: Lemma for gamcvg2 24786. (Contributed by Mario Carneiro, 10-Jul-2017.)
Hypotheses
Ref Expression
gamcvg2.f 𝐹 = (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1)))
gamcvg2.a (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
gamcvg2.g 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
Assertion
Ref Expression
gamcvg2lem (𝜑 → (exp ∘ seq1( + , 𝐺)) = seq1( · , 𝐹))
Distinct variable groups:   𝐴,𝑚   𝜑,𝑚
Allowed substitution hints:   𝐹(𝑚)   𝐺(𝑚)

Proof of Theorem gamcvg2lem
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 10018 . . . . 5 ((𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑛 + 𝑥) ∈ ℂ)
21adantl 482 . . . 4 (((𝜑𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑛 + 𝑥) ∈ ℂ)
3 simpll 790 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝜑)
4 elfznn 12370 . . . . . 6 (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ)
54adantl 482 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ)
6 oveq1 6657 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
7 id 22 . . . . . . . . . . . 12 (𝑚 = 𝑛𝑚 = 𝑛)
86, 7oveq12d 6668 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑚 + 1) / 𝑚) = ((𝑛 + 1) / 𝑛))
98fveq2d 6195 . . . . . . . . . 10 (𝑚 = 𝑛 → (log‘((𝑚 + 1) / 𝑚)) = (log‘((𝑛 + 1) / 𝑛)))
109oveq2d 6666 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐴 · (log‘((𝑚 + 1) / 𝑚))) = (𝐴 · (log‘((𝑛 + 1) / 𝑛))))
11 oveq2 6658 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝐴 / 𝑚) = (𝐴 / 𝑛))
1211oveq1d 6665 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐴 / 𝑚) + 1) = ((𝐴 / 𝑛) + 1))
1312fveq2d 6195 . . . . . . . . 9 (𝑚 = 𝑛 → (log‘((𝐴 / 𝑚) + 1)) = (log‘((𝐴 / 𝑛) + 1)))
1410, 13oveq12d 6668 . . . . . . . 8 (𝑚 = 𝑛 → ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))) = ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))))
15 gamcvg2.g . . . . . . . 8 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
16 ovex 6678 . . . . . . . 8 ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))) ∈ V
1714, 15, 16fvmpt 6282 . . . . . . 7 (𝑛 ∈ ℕ → (𝐺𝑛) = ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))))
1817adantl 482 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) = ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))))
19 gamcvg2.a . . . . . . . . . 10 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2019adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2120eldifad 3586 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℂ)
22 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
2322peano2nnd 11037 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
2423nnrpd 11870 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ+)
2522nnrpd 11870 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
2624, 25rpdivcld 11889 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈ ℝ+)
2726relogcld 24369 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℝ)
2827recnd 10068 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (log‘((𝑛 + 1) / 𝑛)) ∈ ℂ)
2921, 28mulcld 10060 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐴 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℂ)
3022nncnd 11036 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
3122nnne0d 11065 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
3221, 30, 31divcld 10801 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐴 / 𝑛) ∈ ℂ)
33 1cnd 10056 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℂ)
3432, 33addcld 10059 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝐴 / 𝑛) + 1) ∈ ℂ)
3520, 22dmgmdivn0 24754 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝐴 / 𝑛) + 1) ≠ 0)
3634, 35logcld 24317 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (log‘((𝐴 / 𝑛) + 1)) ∈ ℂ)
3729, 36subcld 10392 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1))) ∈ ℂ)
3818, 37eqeltrd 2701 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℂ)
393, 5, 38syl2anc 693 . . . 4 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐺𝑛) ∈ ℂ)
40 simpr 477 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
41 nnuz 11723 . . . . 5 ℕ = (ℤ‘1)
4240, 41syl6eleq 2711 . . . 4 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
43 efadd 14824 . . . . 5 ((𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (exp‘(𝑛 + 𝑥)) = ((exp‘𝑛) · (exp‘𝑥)))
4443adantl 482 . . . 4 (((𝜑𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (exp‘(𝑛 + 𝑥)) = ((exp‘𝑛) · (exp‘𝑥)))
45 efsub 14830 . . . . . . . 8 (((𝐴 · (log‘((𝑛 + 1) / 𝑛))) ∈ ℂ ∧ (log‘((𝐴 / 𝑛) + 1)) ∈ ℂ) → (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) = ((exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) / (exp‘(log‘((𝐴 / 𝑛) + 1)))))
4629, 36, 45syl2anc 693 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) = ((exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) / (exp‘(log‘((𝐴 / 𝑛) + 1)))))
4730, 33addcld 10059 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℂ)
4847, 30, 31divcld 10801 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ∈ ℂ)
4923nnne0d 11065 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ≠ 0)
5047, 30, 49, 31divne0d 10817 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) / 𝑛) ≠ 0)
5148, 50, 21cxpefd 24458 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((𝑛 + 1) / 𝑛)↑𝑐𝐴) = (exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))))
5251eqcomd 2628 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) = (((𝑛 + 1) / 𝑛)↑𝑐𝐴))
53 eflog 24323 . . . . . . . . 9 ((((𝐴 / 𝑛) + 1) ∈ ℂ ∧ ((𝐴 / 𝑛) + 1) ≠ 0) → (exp‘(log‘((𝐴 / 𝑛) + 1))) = ((𝐴 / 𝑛) + 1))
5434, 35, 53syl2anc 693 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (exp‘(log‘((𝐴 / 𝑛) + 1))) = ((𝐴 / 𝑛) + 1))
5552, 54oveq12d 6668 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((exp‘(𝐴 · (log‘((𝑛 + 1) / 𝑛)))) / (exp‘(log‘((𝐴 / 𝑛) + 1)))) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
5646, 55eqtrd 2656 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
5718fveq2d 6195 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (exp‘(𝐺𝑛)) = (exp‘((𝐴 · (log‘((𝑛 + 1) / 𝑛))) − (log‘((𝐴 / 𝑛) + 1)))))
588oveq1d 6665 . . . . . . . . 9 (𝑚 = 𝑛 → (((𝑚 + 1) / 𝑚)↑𝑐𝐴) = (((𝑛 + 1) / 𝑛)↑𝑐𝐴))
5958, 12oveq12d 6668 . . . . . . . 8 (𝑚 = 𝑛 → ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1)) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
60 gamcvg2.f . . . . . . . 8 𝐹 = (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1)))
61 ovex 6678 . . . . . . . 8 ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)) ∈ V
6259, 60, 61fvmpt 6282 . . . . . . 7 (𝑛 ∈ ℕ → (𝐹𝑛) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
6362adantl 482 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = ((((𝑛 + 1) / 𝑛)↑𝑐𝐴) / ((𝐴 / 𝑛) + 1)))
6456, 57, 633eqtr4d 2666 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (exp‘(𝐺𝑛)) = (𝐹𝑛))
653, 5, 64syl2anc 693 . . . 4 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (exp‘(𝐺𝑛)) = (𝐹𝑛))
662, 39, 42, 44, 65seqhomo 12848 . . 3 ((𝜑𝑘 ∈ ℕ) → (exp‘(seq1( + , 𝐺)‘𝑘)) = (seq1( · , 𝐹)‘𝑘))
6766mpteq2dva 4744 . 2 (𝜑 → (𝑘 ∈ ℕ ↦ (exp‘(seq1( + , 𝐺)‘𝑘))) = (𝑘 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑘)))
68 eff 14812 . . . 4 exp:ℂ⟶ℂ
6968a1i 11 . . 3 (𝜑 → exp:ℂ⟶ℂ)
70 1z 11407 . . . . 5 1 ∈ ℤ
7170a1i 11 . . . 4 (𝜑 → 1 ∈ ℤ)
7241, 71, 38serf 12829 . . 3 (𝜑 → seq1( + , 𝐺):ℕ⟶ℂ)
73 fcompt 6400 . . 3 ((exp:ℂ⟶ℂ ∧ seq1( + , 𝐺):ℕ⟶ℂ) → (exp ∘ seq1( + , 𝐺)) = (𝑘 ∈ ℕ ↦ (exp‘(seq1( + , 𝐺)‘𝑘))))
7469, 72, 73syl2anc 693 . 2 (𝜑 → (exp ∘ seq1( + , 𝐺)) = (𝑘 ∈ ℕ ↦ (exp‘(seq1( + , 𝐺)‘𝑘))))
75 seqfn 12813 . . . . 5 (1 ∈ ℤ → seq1( · , 𝐹) Fn (ℤ‘1))
7670, 75mp1i 13 . . . 4 (𝜑 → seq1( · , 𝐹) Fn (ℤ‘1))
7741fneq2i 5986 . . . 4 (seq1( · , 𝐹) Fn ℕ ↔ seq1( · , 𝐹) Fn (ℤ‘1))
7876, 77sylibr 224 . . 3 (𝜑 → seq1( · , 𝐹) Fn ℕ)
79 dffn5 6241 . . 3 (seq1( · , 𝐹) Fn ℕ ↔ seq1( · , 𝐹) = (𝑘 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑘)))
8078, 79sylib 208 . 2 (𝜑 → seq1( · , 𝐹) = (𝑘 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑘)))
8167, 74, 803eqtr4d 2666 1 (𝜑 → (exp ∘ seq1( + , 𝐺)) = seq1( · , 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  cdif 3571  cmpt 4729  ccom 5118   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266   / cdiv 10684  cn 11020  cz 11377  cuz 11687  ...cfz 12326  seqcseq 12801  expce 14792  logclog 24301  𝑐ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by:  gamcvg2  24786
  Copyright terms: Public domain W3C validator