MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmm0cl Structured version   Visualization version   GIF version

Theorem dsmm0cl 20084
Description: The all-zero vector is contained in the finite hull, since its support is empty and therefore finite. This theorem along with the next one effectively proves that the finite hull is a "submonoid", although that does not exist as a defined concept yet. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmcl.p 𝑃 = (𝑆Xs𝑅)
dsmmcl.h 𝐻 = (Base‘(𝑆m 𝑅))
dsmmcl.i (𝜑𝐼𝑊)
dsmmcl.s (𝜑𝑆𝑉)
dsmmcl.r (𝜑𝑅:𝐼⟶Mnd)
dsmm0cl.z 0 = (0g𝑃)
Assertion
Ref Expression
dsmm0cl (𝜑0𝐻)

Proof of Theorem dsmm0cl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dsmmcl.p . . . 4 𝑃 = (𝑆Xs𝑅)
2 dsmmcl.i . . . 4 (𝜑𝐼𝑊)
3 dsmmcl.s . . . 4 (𝜑𝑆𝑉)
4 dsmmcl.r . . . 4 (𝜑𝑅:𝐼⟶Mnd)
51, 2, 3, 4prdsmndd 17323 . . 3 (𝜑𝑃 ∈ Mnd)
6 eqid 2622 . . . 4 (Base‘𝑃) = (Base‘𝑃)
7 dsmm0cl.z . . . 4 0 = (0g𝑃)
86, 7mndidcl 17308 . . 3 (𝑃 ∈ Mnd → 0 ∈ (Base‘𝑃))
95, 8syl 17 . 2 (𝜑0 ∈ (Base‘𝑃))
101, 2, 3, 4prds0g 17324 . . . . . . . . . 10 (𝜑 → (0g𝑅) = (0g𝑃))
1110, 7syl6eqr 2674 . . . . . . . . 9 (𝜑 → (0g𝑅) = 0 )
1211adantr 481 . . . . . . . 8 ((𝜑𝑎𝐼) → (0g𝑅) = 0 )
1312fveq1d 6193 . . . . . . 7 ((𝜑𝑎𝐼) → ((0g𝑅)‘𝑎) = ( 0𝑎))
14 ffn 6045 . . . . . . . . 9 (𝑅:𝐼⟶Mnd → 𝑅 Fn 𝐼)
154, 14syl 17 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
16 fvco2 6273 . . . . . . . 8 ((𝑅 Fn 𝐼𝑎𝐼) → ((0g𝑅)‘𝑎) = (0g‘(𝑅𝑎)))
1715, 16sylan 488 . . . . . . 7 ((𝜑𝑎𝐼) → ((0g𝑅)‘𝑎) = (0g‘(𝑅𝑎)))
1813, 17eqtr3d 2658 . . . . . 6 ((𝜑𝑎𝐼) → ( 0𝑎) = (0g‘(𝑅𝑎)))
19 nne 2798 . . . . . 6 (¬ ( 0𝑎) ≠ (0g‘(𝑅𝑎)) ↔ ( 0𝑎) = (0g‘(𝑅𝑎)))
2018, 19sylibr 224 . . . . 5 ((𝜑𝑎𝐼) → ¬ ( 0𝑎) ≠ (0g‘(𝑅𝑎)))
2120ralrimiva 2966 . . . 4 (𝜑 → ∀𝑎𝐼 ¬ ( 0𝑎) ≠ (0g‘(𝑅𝑎)))
22 rabeq0 3957 . . . 4 ({𝑎𝐼 ∣ ( 0𝑎) ≠ (0g‘(𝑅𝑎))} = ∅ ↔ ∀𝑎𝐼 ¬ ( 0𝑎) ≠ (0g‘(𝑅𝑎)))
2321, 22sylibr 224 . . 3 (𝜑 → {𝑎𝐼 ∣ ( 0𝑎) ≠ (0g‘(𝑅𝑎))} = ∅)
24 0fin 8188 . . 3 ∅ ∈ Fin
2523, 24syl6eqel 2709 . 2 (𝜑 → {𝑎𝐼 ∣ ( 0𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
26 eqid 2622 . . 3 (𝑆m 𝑅) = (𝑆m 𝑅)
27 dsmmcl.h . . 3 𝐻 = (Base‘(𝑆m 𝑅))
281, 26, 6, 27, 2, 15dsmmelbas 20083 . 2 (𝜑 → ( 0𝐻 ↔ ( 0 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ ( 0𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
299, 25, 28mpbir2and 957 1 (𝜑0𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  c0 3915  ccom 5118   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  Basecbs 15857  0gc0g 16100  Xscprds 16106  Mndcmnd 17294  m cdsmm 20075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-dsmm 20076
This theorem is referenced by:  dsmmsubg  20087
  Copyright terms: Public domain W3C validator