MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnfre Structured version   Visualization version   GIF version

Theorem dvnfre 23715
Description: The 𝑁-th derivative of a real function is real. (Contributed by Mario Carneiro, 1-Jan-2017.)
Assertion
Ref Expression
dvnfre ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑁 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ)

Proof of Theorem dvnfre
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . 6 (𝑥 = 0 → ((ℝ D𝑛 𝐹)‘𝑥) = ((ℝ D𝑛 𝐹)‘0))
21dmeqd 5326 . . . . . 6 (𝑥 = 0 → dom ((ℝ D𝑛 𝐹)‘𝑥) = dom ((ℝ D𝑛 𝐹)‘0))
31, 2feq12d 6033 . . . . 5 (𝑥 = 0 → (((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘0):dom ((ℝ D𝑛 𝐹)‘0)⟶ℝ))
43imbi2d 330 . . . 4 (𝑥 = 0 → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ) ↔ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘0):dom ((ℝ D𝑛 𝐹)‘0)⟶ℝ)))
5 fveq2 6191 . . . . . 6 (𝑥 = 𝑛 → ((ℝ D𝑛 𝐹)‘𝑥) = ((ℝ D𝑛 𝐹)‘𝑛))
65dmeqd 5326 . . . . . 6 (𝑥 = 𝑛 → dom ((ℝ D𝑛 𝐹)‘𝑥) = dom ((ℝ D𝑛 𝐹)‘𝑛))
75, 6feq12d 6033 . . . . 5 (𝑥 = 𝑛 → (((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ))
87imbi2d 330 . . . 4 (𝑥 = 𝑛 → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ) ↔ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)))
9 fveq2 6191 . . . . . 6 (𝑥 = (𝑛 + 1) → ((ℝ D𝑛 𝐹)‘𝑥) = ((ℝ D𝑛 𝐹)‘(𝑛 + 1)))
109dmeqd 5326 . . . . . 6 (𝑥 = (𝑛 + 1) → dom ((ℝ D𝑛 𝐹)‘𝑥) = dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1)))
119, 10feq12d 6033 . . . . 5 (𝑥 = (𝑛 + 1) → (((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ))
1211imbi2d 330 . . . 4 (𝑥 = (𝑛 + 1) → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ) ↔ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ)))
13 fveq2 6191 . . . . . 6 (𝑥 = 𝑁 → ((ℝ D𝑛 𝐹)‘𝑥) = ((ℝ D𝑛 𝐹)‘𝑁))
1413dmeqd 5326 . . . . . 6 (𝑥 = 𝑁 → dom ((ℝ D𝑛 𝐹)‘𝑥) = dom ((ℝ D𝑛 𝐹)‘𝑁))
1513, 14feq12d 6033 . . . . 5 (𝑥 = 𝑁 → (((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ))
1615imbi2d 330 . . . 4 (𝑥 = 𝑁 → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ) ↔ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ)))
17 simpl 473 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹:𝐴⟶ℝ)
18 ax-resscn 9993 . . . . . . 7 ℝ ⊆ ℂ
19 fss 6056 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
2018, 19mpan2 707 . . . . . . . 8 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ)
21 cnex 10017 . . . . . . . . 9 ℂ ∈ V
22 reex 10027 . . . . . . . . 9 ℝ ∈ V
23 elpm2r 7875 . . . . . . . . 9 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
2421, 22, 23mpanl12 718 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
2520, 24sylan 488 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
26 dvn0 23687 . . . . . . 7 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ)) → ((ℝ D𝑛 𝐹)‘0) = 𝐹)
2718, 25, 26sylancr 695 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘0) = 𝐹)
2827dmeqd 5326 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → dom ((ℝ D𝑛 𝐹)‘0) = dom 𝐹)
29 fdm 6051 . . . . . . . 8 (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴)
3029adantr 481 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → dom 𝐹 = 𝐴)
3128, 30eqtrd 2656 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → dom ((ℝ D𝑛 𝐹)‘0) = 𝐴)
3227, 31feq12d 6033 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (((ℝ D𝑛 𝐹)‘0):dom ((ℝ D𝑛 𝐹)‘0)⟶ℝ ↔ 𝐹:𝐴⟶ℝ))
3317, 32mpbird 247 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘0):dom ((ℝ D𝑛 𝐹)‘0)⟶ℝ)
34 simprr 796 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)
3522prid1 4297 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
3635a1i 11 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → ℝ ∈ {ℝ, ℂ})
3725adantr 481 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
38 simprl 794 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → 𝑛 ∈ ℕ0)
39 dvnbss 23691 . . . . . . . . . . . 12 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝑛 ∈ ℕ0) → dom ((ℝ D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹)
4036, 37, 38, 39syl3anc 1326 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom ((ℝ D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹)
4130adantr 481 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom 𝐹 = 𝐴)
4240, 41sseqtrd 3641 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom ((ℝ D𝑛 𝐹)‘𝑛) ⊆ 𝐴)
43 simplr 792 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → 𝐴 ⊆ ℝ)
4442, 43sstrd 3613 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom ((ℝ D𝑛 𝐹)‘𝑛) ⊆ ℝ)
45 dvfre 23714 . . . . . . . . 9 ((((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ ∧ dom ((ℝ D𝑛 𝐹)‘𝑛) ⊆ ℝ) → (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)):dom (ℝ D ((ℝ D𝑛 𝐹)‘𝑛))⟶ℝ)
4634, 44, 45syl2anc 693 . . . . . . . 8 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)):dom (ℝ D ((ℝ D𝑛 𝐹)‘𝑛))⟶ℝ)
4718a1i 11 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → ℝ ⊆ ℂ)
48 dvnp1 23688 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝑛 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)))
4947, 37, 38, 48syl3anc 1326 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)))
5049dmeqd 5326 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1)) = dom (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)))
5149, 50feq12d 6033 . . . . . . . 8 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → (((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ ↔ (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)):dom (ℝ D ((ℝ D𝑛 𝐹)‘𝑛))⟶ℝ))
5246, 51mpbird 247 . . . . . . 7 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ)
5352expr 643 . . . . . 6 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑛 ∈ ℕ0) → (((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ))
5453expcom 451 . . . . 5 (𝑛 ∈ ℕ0 → ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ)))
5554a2d 29 . . . 4 (𝑛 ∈ ℕ0 → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ) → ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ)))
564, 8, 12, 16, 33, 55nn0ind 11472 . . 3 (𝑁 ∈ ℕ0 → ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ))
5756com12 32 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (𝑁 ∈ ℕ0 → ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ))
58573impia 1261 1 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑁 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  {cpr 4179  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  pm cpm 7858  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  0cn0 11292   D cdv 23627   D𝑛 cdvn 23628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-cncf 22681  df-limc 23630  df-dv 23631  df-dvn 23632
This theorem is referenced by:  taylthlem2  24128
  Copyright terms: Public domain W3C validator