Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2icobrsiga Structured version   Visualization version   GIF version

Theorem dya2icobrsiga 30338
Description: Dyadic intervals are Borel sets of . (Contributed by Thierry Arnoux, 22-Sep-2017.) (Revised by Thierry Arnoux, 13-Oct-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
Assertion
Ref Expression
dya2icobrsiga ran 𝐼 ⊆ 𝔅
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝐼(𝑥,𝑛)   𝐽(𝑥,𝑛)

Proof of Theorem dya2icobrsiga
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 dya2ioc.1 . . . 4 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
2 ovex 6678 . . . 4 ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V
31, 2elrnmpt2 6773 . . 3 (𝑑 ∈ ran 𝐼 ↔ ∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
4 simpr 477 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
5 mnfxr 10096 . . . . . . . . . 10 -∞ ∈ ℝ*
65a1i 11 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → -∞ ∈ ℝ*)
7 simpl 473 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℤ)
87zred 11482 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℝ)
9 2rp 11837 . . . . . . . . . . . . 13 2 ∈ ℝ+
109a1i 11 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 2 ∈ ℝ+)
11 simpr 477 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
1210, 11rpexpcld 13032 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2↑𝑛) ∈ ℝ+)
138, 12rerpdivcld 11903 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ∈ ℝ)
1413rexrd 10089 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ∈ ℝ*)
15 1red 10055 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 1 ∈ ℝ)
168, 15readdcld 10069 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 + 1) ∈ ℝ)
1716, 12rerpdivcld 11903 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ)
1817rexrd 10089 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*)
19 mnflt 11957 . . . . . . . . . 10 ((𝑥 / (2↑𝑛)) ∈ ℝ → -∞ < (𝑥 / (2↑𝑛)))
2013, 19syl 17 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → -∞ < (𝑥 / (2↑𝑛)))
21 difioo 29544 . . . . . . . . 9 (((-∞ ∈ ℝ* ∧ (𝑥 / (2↑𝑛)) ∈ ℝ* ∧ ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*) ∧ -∞ < (𝑥 / (2↑𝑛))) → ((-∞(,)((𝑥 + 1) / (2↑𝑛))) ∖ (-∞(,)(𝑥 / (2↑𝑛)))) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
226, 14, 18, 20, 21syl31anc 1329 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((-∞(,)((𝑥 + 1) / (2↑𝑛))) ∖ (-∞(,)(𝑥 / (2↑𝑛)))) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
23 brsigarn 30247 . . . . . . . . . 10 𝔅 ∈ (sigAlgebra‘ℝ)
24 elrnsiga 30189 . . . . . . . . . 10 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
2523, 24ax-mp 5 . . . . . . . . 9 𝔅 ran sigAlgebra
26 retop 22565 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Top
27 iooretop 22569 . . . . . . . . . . 11 (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ (topGen‘ran (,))
28 elsigagen 30210 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ (topGen‘ran (,))) → (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ (sigaGen‘(topGen‘ran (,))))
2926, 27, 28mp2an 708 . . . . . . . . . 10 (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ (sigaGen‘(topGen‘ran (,)))
30 df-brsiga 30245 . . . . . . . . . 10 𝔅 = (sigaGen‘(topGen‘ran (,)))
3129, 30eleqtrri 2700 . . . . . . . . 9 (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ 𝔅
32 iooretop 22569 . . . . . . . . . . 11 (-∞(,)(𝑥 / (2↑𝑛))) ∈ (topGen‘ran (,))
33 elsigagen 30210 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)(𝑥 / (2↑𝑛))) ∈ (topGen‘ran (,))) → (-∞(,)(𝑥 / (2↑𝑛))) ∈ (sigaGen‘(topGen‘ran (,))))
3426, 32, 33mp2an 708 . . . . . . . . . 10 (-∞(,)(𝑥 / (2↑𝑛))) ∈ (sigaGen‘(topGen‘ran (,)))
3534, 30eleqtrri 2700 . . . . . . . . 9 (-∞(,)(𝑥 / (2↑𝑛))) ∈ 𝔅
36 difelsiga 30196 . . . . . . . . 9 ((𝔅 ran sigAlgebra ∧ (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ 𝔅 ∧ (-∞(,)(𝑥 / (2↑𝑛))) ∈ 𝔅) → ((-∞(,)((𝑥 + 1) / (2↑𝑛))) ∖ (-∞(,)(𝑥 / (2↑𝑛)))) ∈ 𝔅)
3725, 31, 35, 36mp3an 1424 . . . . . . . 8 ((-∞(,)((𝑥 + 1) / (2↑𝑛))) ∖ (-∞(,)(𝑥 / (2↑𝑛)))) ∈ 𝔅
3822, 37syl6eqelr 2710 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ 𝔅)
3938adantr 481 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ 𝔅)
404, 39eqeltrd 2701 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑑 ∈ 𝔅)
4140ex 450 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → 𝑑 ∈ 𝔅))
4241rexlimivv 3036 . . 3 (∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → 𝑑 ∈ 𝔅)
433, 42sylbi 207 . 2 (𝑑 ∈ ran 𝐼𝑑 ∈ 𝔅)
4443ssriv 3607 1 ran 𝐼 ⊆ 𝔅
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wcel 1990  wrex 2913  cdif 3571  wss 3574   cuni 4436   class class class wbr 4653  ran crn 5115  cfv 5888  (class class class)co 6650  cmpt2 6652  cr 9935  1c1 9937   + caddc 9939  -∞cmnf 10072  *cxr 10073   < clt 10074   / cdiv 10684  2c2 11070  cz 11377  +crp 11832  (,)cioo 12175  [,)cico 12177  cexp 12860  topGenctg 16098  Topctop 20698  sigAlgebracsiga 30170  sigaGencsigagen 30201  𝔅cbrsiga 30244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-seq 12802  df-exp 12861  df-topgen 16104  df-top 20699  df-bases 20750  df-siga 30171  df-sigagen 30202  df-brsiga 30245
This theorem is referenced by:  sxbrsigalem2  30348  sxbrsigalem5  30350
  Copyright terms: Public domain W3C validator