MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellspd Structured version   Visualization version   GIF version

Theorem ellspd 20141
Description: The elements of the span of an indexed collection of basic vectors are those vectors which can be written as finite linear combinations of basic vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by AV, 24-Jun-2019.)
Hypotheses
Ref Expression
ellspd.n 𝑁 = (LSpan‘𝑀)
ellspd.v 𝐵 = (Base‘𝑀)
ellspd.k 𝐾 = (Base‘𝑆)
ellspd.s 𝑆 = (Scalar‘𝑀)
ellspd.z 0 = (0g𝑆)
ellspd.t · = ( ·𝑠𝑀)
ellspd.f (𝜑𝐹:𝐼𝐵)
ellspd.m (𝜑𝑀 ∈ LMod)
ellspd.i (𝜑𝐼 ∈ V)
Assertion
Ref Expression
ellspd (𝜑 → (𝑋 ∈ (𝑁‘(𝐹𝐼)) ↔ ∃𝑓 ∈ (𝐾𝑚 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓𝑓 · 𝐹)))))
Distinct variable groups:   𝑓,𝑀   𝐵,𝑓   𝑓,𝑁   𝑓,𝐾   𝑆,𝑓   0 ,𝑓   · ,𝑓   𝑓,𝐹   𝑓,𝐼   𝑓,𝑋   𝜑,𝑓

Proof of Theorem ellspd
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ellspd.f . . . . . 6 (𝜑𝐹:𝐼𝐵)
2 ffn 6045 . . . . . 6 (𝐹:𝐼𝐵𝐹 Fn 𝐼)
3 fnima 6010 . . . . . 6 (𝐹 Fn 𝐼 → (𝐹𝐼) = ran 𝐹)
41, 2, 33syl 18 . . . . 5 (𝜑 → (𝐹𝐼) = ran 𝐹)
54fveq2d 6195 . . . 4 (𝜑 → (𝑁‘(𝐹𝐼)) = (𝑁‘ran 𝐹))
6 eqid 2622 . . . . . 6 (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓𝑓 · 𝐹))) = (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓𝑓 · 𝐹)))
76rnmpt 5371 . . . . 5 ran (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓𝑓 · 𝐹))) = {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓𝑓 · 𝐹))}
8 eqid 2622 . . . . . 6 (𝑆 freeLMod 𝐼) = (𝑆 freeLMod 𝐼)
9 eqid 2622 . . . . . 6 (Base‘(𝑆 freeLMod 𝐼)) = (Base‘(𝑆 freeLMod 𝐼))
10 ellspd.v . . . . . 6 𝐵 = (Base‘𝑀)
11 ellspd.t . . . . . 6 · = ( ·𝑠𝑀)
12 ellspd.m . . . . . 6 (𝜑𝑀 ∈ LMod)
13 ellspd.i . . . . . 6 (𝜑𝐼 ∈ V)
14 ellspd.s . . . . . . 7 𝑆 = (Scalar‘𝑀)
1514a1i 11 . . . . . 6 (𝜑𝑆 = (Scalar‘𝑀))
16 ellspd.n . . . . . 6 𝑁 = (LSpan‘𝑀)
178, 9, 10, 11, 6, 12, 13, 15, 1, 16frlmup3 20139 . . . . 5 (𝜑 → ran (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓𝑓 · 𝐹))) = (𝑁‘ran 𝐹))
187, 17syl5eqr 2670 . . . 4 (𝜑 → {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓𝑓 · 𝐹))} = (𝑁‘ran 𝐹))
195, 18eqtr4d 2659 . . 3 (𝜑 → (𝑁‘(𝐹𝐼)) = {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓𝑓 · 𝐹))})
2019eleq2d 2687 . 2 (𝜑 → (𝑋 ∈ (𝑁‘(𝐹𝐼)) ↔ 𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓𝑓 · 𝐹))}))
21 ovex 6678 . . . . . 6 (𝑀 Σg (𝑓𝑓 · 𝐹)) ∈ V
22 eleq1 2689 . . . . . 6 (𝑋 = (𝑀 Σg (𝑓𝑓 · 𝐹)) → (𝑋 ∈ V ↔ (𝑀 Σg (𝑓𝑓 · 𝐹)) ∈ V))
2321, 22mpbiri 248 . . . . 5 (𝑋 = (𝑀 Σg (𝑓𝑓 · 𝐹)) → 𝑋 ∈ V)
2423rexlimivw 3029 . . . 4 (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓𝑓 · 𝐹)) → 𝑋 ∈ V)
25 eqeq1 2626 . . . . 5 (𝑎 = 𝑋 → (𝑎 = (𝑀 Σg (𝑓𝑓 · 𝐹)) ↔ 𝑋 = (𝑀 Σg (𝑓𝑓 · 𝐹))))
2625rexbidv 3052 . . . 4 (𝑎 = 𝑋 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓𝑓 · 𝐹)) ↔ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓𝑓 · 𝐹))))
2724, 26elab3 3358 . . 3 (𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓𝑓 · 𝐹))} ↔ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓𝑓 · 𝐹)))
28 fvex 6201 . . . . . . . 8 (Scalar‘𝑀) ∈ V
2914, 28eqeltri 2697 . . . . . . 7 𝑆 ∈ V
30 ellspd.k . . . . . . . 8 𝐾 = (Base‘𝑆)
31 ellspd.z . . . . . . . 8 0 = (0g𝑆)
32 eqid 2622 . . . . . . . 8 {𝑎 ∈ (𝐾𝑚 𝐼) ∣ 𝑎 finSupp 0 } = {𝑎 ∈ (𝐾𝑚 𝐼) ∣ 𝑎 finSupp 0 }
338, 30, 31, 32frlmbas 20099 . . . . . . 7 ((𝑆 ∈ V ∧ 𝐼 ∈ V) → {𝑎 ∈ (𝐾𝑚 𝐼) ∣ 𝑎 finSupp 0 } = (Base‘(𝑆 freeLMod 𝐼)))
3429, 13, 33sylancr 695 . . . . . 6 (𝜑 → {𝑎 ∈ (𝐾𝑚 𝐼) ∣ 𝑎 finSupp 0 } = (Base‘(𝑆 freeLMod 𝐼)))
3534eqcomd 2628 . . . . 5 (𝜑 → (Base‘(𝑆 freeLMod 𝐼)) = {𝑎 ∈ (𝐾𝑚 𝐼) ∣ 𝑎 finSupp 0 })
3635rexeqdv 3145 . . . 4 (𝜑 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓𝑓 · 𝐹)) ↔ ∃𝑓 ∈ {𝑎 ∈ (𝐾𝑚 𝐼) ∣ 𝑎 finSupp 0 }𝑋 = (𝑀 Σg (𝑓𝑓 · 𝐹))))
37 breq1 4656 . . . . 5 (𝑎 = 𝑓 → (𝑎 finSupp 0𝑓 finSupp 0 ))
3837rexrab 3370 . . . 4 (∃𝑓 ∈ {𝑎 ∈ (𝐾𝑚 𝐼) ∣ 𝑎 finSupp 0 }𝑋 = (𝑀 Σg (𝑓𝑓 · 𝐹)) ↔ ∃𝑓 ∈ (𝐾𝑚 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓𝑓 · 𝐹))))
3936, 38syl6bb 276 . . 3 (𝜑 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓𝑓 · 𝐹)) ↔ ∃𝑓 ∈ (𝐾𝑚 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓𝑓 · 𝐹)))))
4027, 39syl5bb 272 . 2 (𝜑 → (𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓𝑓 · 𝐹))} ↔ ∃𝑓 ∈ (𝐾𝑚 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓𝑓 · 𝐹)))))
4120, 40bitrd 268 1 (𝜑 → (𝑋 ∈ (𝑁‘(𝐹𝐼)) ↔ ∃𝑓 ∈ (𝐾𝑚 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓𝑓 · 𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wrex 2913  {crab 2916  Vcvv 3200   class class class wbr 4653  cmpt 4729  ran crn 5115  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  𝑚 cmap 7857   finSupp cfsupp 8275  Basecbs 15857  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100   Σg cgsu 16101  LModclmod 18863  LSpanclspn 18971   freeLMod cfrlm 20090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lmhm 19022  df-lbs 19075  df-sra 19172  df-rgmod 19173  df-nzr 19258  df-dsmm 20076  df-frlm 20091  df-uvc 20122
This theorem is referenced by:  elfilspd  20142  islindf4  20177
  Copyright terms: Public domain W3C validator