| Step | Hyp | Ref
| Expression |
| 1 | | ssid 3624 |
. . . 4
⊢ ℂ
⊆ ℂ |
| 2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → ℂ ⊆
ℂ) |
| 3 | | coeeu.4 |
. . . 4
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 4 | | coeeu.5 |
. . . 4
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 5 | 3, 4 | nn0addcld 11355 |
. . 3
⊢ (𝜑 → (𝑀 + 𝑁) ∈
ℕ0) |
| 6 | | subcl 10280 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 − 𝑦) ∈ ℂ) |
| 7 | 6 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 − 𝑦) ∈ ℂ) |
| 8 | | coeeu.2 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (ℂ ↑𝑚
ℕ0)) |
| 9 | | cnex 10017 |
. . . . . . . 8
⊢ ℂ
∈ V |
| 10 | | nn0ex 11298 |
. . . . . . . 8
⊢
ℕ0 ∈ V |
| 11 | 9, 10 | elmap 7886 |
. . . . . . 7
⊢ (𝐴 ∈ (ℂ
↑𝑚 ℕ0) ↔ 𝐴:ℕ0⟶ℂ) |
| 12 | 8, 11 | sylib 208 |
. . . . . 6
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| 13 | | coeeu.3 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ (ℂ ↑𝑚
ℕ0)) |
| 14 | 9, 10 | elmap 7886 |
. . . . . . 7
⊢ (𝐵 ∈ (ℂ
↑𝑚 ℕ0) ↔ 𝐵:ℕ0⟶ℂ) |
| 15 | 13, 14 | sylib 208 |
. . . . . 6
⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) |
| 16 | 10 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℕ0 ∈
V) |
| 17 | | inidm 3822 |
. . . . . 6
⊢
(ℕ0 ∩ ℕ0) =
ℕ0 |
| 18 | 7, 12, 15, 16, 16, 17 | off 6912 |
. . . . 5
⊢ (𝜑 → (𝐴 ∘𝑓 − 𝐵):ℕ0⟶ℂ) |
| 19 | 9, 10 | elmap 7886 |
. . . . 5
⊢ ((𝐴 ∘𝑓
− 𝐵) ∈ (ℂ
↑𝑚 ℕ0) ↔ (𝐴 ∘𝑓 − 𝐵):ℕ0⟶ℂ) |
| 20 | 18, 19 | sylibr 224 |
. . . 4
⊢ (𝜑 → (𝐴 ∘𝑓 − 𝐵) ∈ (ℂ
↑𝑚 ℕ0)) |
| 21 | | 0cn 10032 |
. . . . . . 7
⊢ 0 ∈
ℂ |
| 22 | | snssi 4339 |
. . . . . . 7
⊢ (0 ∈
ℂ → {0} ⊆ ℂ) |
| 23 | 21, 22 | ax-mp 5 |
. . . . . 6
⊢ {0}
⊆ ℂ |
| 24 | | ssequn2 3786 |
. . . . . 6
⊢ ({0}
⊆ ℂ ↔ (ℂ ∪ {0}) = ℂ) |
| 25 | 23, 24 | mpbi 220 |
. . . . 5
⊢ (ℂ
∪ {0}) = ℂ |
| 26 | 25 | oveq1i 6660 |
. . . 4
⊢ ((ℂ
∪ {0}) ↑𝑚 ℕ0) = (ℂ
↑𝑚 ℕ0) |
| 27 | 20, 26 | syl6eleqr 2712 |
. . 3
⊢ (𝜑 → (𝐴 ∘𝑓 − 𝐵) ∈ ((ℂ ∪ {0})
↑𝑚 ℕ0)) |
| 28 | 5 | nn0red 11352 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 + 𝑁) ∈ ℝ) |
| 29 | | nn0re 11301 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℝ) |
| 30 | | ltnle 10117 |
. . . . . . . 8
⊢ (((𝑀 + 𝑁) ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝑀 + 𝑁) < 𝑘 ↔ ¬ 𝑘 ≤ (𝑀 + 𝑁))) |
| 31 | 28, 29, 30 | syl2an 494 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑀 + 𝑁) < 𝑘 ↔ ¬ 𝑘 ≤ (𝑀 + 𝑁))) |
| 32 | | ffn 6045 |
. . . . . . . . . . . 12
⊢ (𝐴:ℕ0⟶ℂ →
𝐴 Fn
ℕ0) |
| 33 | 12, 32 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 Fn ℕ0) |
| 34 | | ffn 6045 |
. . . . . . . . . . . 12
⊢ (𝐵:ℕ0⟶ℂ →
𝐵 Fn
ℕ0) |
| 35 | 15, 34 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 Fn ℕ0) |
| 36 | | eqidd 2623 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) = (𝐴‘𝑘)) |
| 37 | | eqidd 2623 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐵‘𝑘) = (𝐵‘𝑘)) |
| 38 | 33, 35, 16, 16, 17, 36, 37 | ofval 6906 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴 ∘𝑓
− 𝐵)‘𝑘) = ((𝐴‘𝑘) − (𝐵‘𝑘))) |
| 39 | 38 | adantrr 753 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐴 ∘𝑓 − 𝐵)‘𝑘) = ((𝐴‘𝑘) − (𝐵‘𝑘))) |
| 40 | 3 | nn0red 11352 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 41 | 40 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑀 ∈ ℝ) |
| 42 | 28 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝑀 + 𝑁) ∈ ℝ) |
| 43 | 29 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℝ) |
| 44 | 43 | adantrr 753 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑘 ∈ ℝ) |
| 45 | 3 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 46 | 4 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 47 | 45, 46 | addcomd 10238 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑀 + 𝑁) = (𝑁 + 𝑀)) |
| 48 | | nn0uz 11722 |
. . . . . . . . . . . . . . . . . . . 20
⊢
ℕ0 = (ℤ≥‘0) |
| 49 | 4, 48 | syl6eleq 2711 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
| 50 | 3 | nn0zd 11480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 51 | | eluzadd 11716 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈
(ℤ≥‘0) ∧ 𝑀 ∈ ℤ) → (𝑁 + 𝑀) ∈ (ℤ≥‘(0 +
𝑀))) |
| 52 | 49, 50, 51 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑁 + 𝑀) ∈ (ℤ≥‘(0 +
𝑀))) |
| 53 | 47, 52 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑀 + 𝑁) ∈ (ℤ≥‘(0 +
𝑀))) |
| 54 | 45 | addid2d 10237 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (0 + 𝑀) = 𝑀) |
| 55 | 54 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
(ℤ≥‘(0 + 𝑀)) = (ℤ≥‘𝑀)) |
| 56 | 53, 55 | eleqtrd 2703 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑀 + 𝑁) ∈ (ℤ≥‘𝑀)) |
| 57 | | eluzle 11700 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘𝑀) → 𝑀 ≤ (𝑀 + 𝑁)) |
| 58 | 56, 57 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ≤ (𝑀 + 𝑁)) |
| 59 | 58 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑀 ≤ (𝑀 + 𝑁)) |
| 60 | | simprr 796 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝑀 + 𝑁) < 𝑘) |
| 61 | 41, 42, 44, 59, 60 | lelttrd 10195 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑀 < 𝑘) |
| 62 | 41, 44 | ltnled 10184 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝑀 < 𝑘 ↔ ¬ 𝑘 ≤ 𝑀)) |
| 63 | 61, 62 | mpbid 222 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ¬ 𝑘 ≤ 𝑀) |
| 64 | | coeeu.6 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) |
| 65 | | plyco0 23948 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ ℕ0
∧ 𝐴:ℕ0⟶ℂ) →
((𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0
((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑀))) |
| 66 | 3, 12, 65 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0
((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑀))) |
| 67 | 64, 66 | mpbid 222 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑀)) |
| 68 | 67 | r19.21bi 2932 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑀)) |
| 69 | 68 | adantrr 753 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑀)) |
| 70 | 69 | necon1bd 2812 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (¬ 𝑘 ≤ 𝑀 → (𝐴‘𝑘) = 0)) |
| 71 | 63, 70 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝐴‘𝑘) = 0) |
| 72 | 4 | nn0red 11352 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 73 | 72 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑁 ∈ ℝ) |
| 74 | 3, 48 | syl6eleq 2711 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
| 75 | 4 | nn0zd 11480 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 76 | | eluzadd 11716 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈
(ℤ≥‘0) ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ (ℤ≥‘(0 +
𝑁))) |
| 77 | 74, 75, 76 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑀 + 𝑁) ∈ (ℤ≥‘(0 +
𝑁))) |
| 78 | 46 | addid2d 10237 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (0 + 𝑁) = 𝑁) |
| 79 | 78 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
(ℤ≥‘(0 + 𝑁)) = (ℤ≥‘𝑁)) |
| 80 | 77, 79 | eleqtrd 2703 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑀 + 𝑁) ∈ (ℤ≥‘𝑁)) |
| 81 | | eluzle 11700 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘𝑁) → 𝑁 ≤ (𝑀 + 𝑁)) |
| 82 | 80, 81 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ≤ (𝑀 + 𝑁)) |
| 83 | 82 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑁 ≤ (𝑀 + 𝑁)) |
| 84 | 73, 42, 44, 83, 60 | lelttrd 10195 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑁 < 𝑘) |
| 85 | 73, 44 | ltnled 10184 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝑁 < 𝑘 ↔ ¬ 𝑘 ≤ 𝑁)) |
| 86 | 84, 85 | mpbid 222 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ¬ 𝑘 ≤ 𝑁) |
| 87 | | coeeu.7 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) |
| 88 | | plyco0 23948 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ0
∧ 𝐵:ℕ0⟶ℂ) →
((𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0
((𝐵‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁))) |
| 89 | 4, 15, 88 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0
((𝐵‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁))) |
| 90 | 87, 89 | mpbid 222 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 ((𝐵‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
| 91 | 90 | r19.21bi 2932 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐵‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
| 92 | 91 | adantrr 753 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐵‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
| 93 | 92 | necon1bd 2812 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (¬ 𝑘 ≤ 𝑁 → (𝐵‘𝑘) = 0)) |
| 94 | 86, 93 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝐵‘𝑘) = 0) |
| 95 | 71, 94 | oveq12d 6668 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐴‘𝑘) − (𝐵‘𝑘)) = (0 − 0)) |
| 96 | | 0m0e0 11130 |
. . . . . . . . . 10
⊢ (0
− 0) = 0 |
| 97 | 95, 96 | syl6eq 2672 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐴‘𝑘) − (𝐵‘𝑘)) = 0) |
| 98 | 39, 97 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐴 ∘𝑓 − 𝐵)‘𝑘) = 0) |
| 99 | 98 | expr 643 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑀 + 𝑁) < 𝑘 → ((𝐴 ∘𝑓 − 𝐵)‘𝑘) = 0)) |
| 100 | 31, 99 | sylbird 250 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (¬
𝑘 ≤ (𝑀 + 𝑁) → ((𝐴 ∘𝑓 − 𝐵)‘𝑘) = 0)) |
| 101 | 100 | necon1ad 2811 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝐴 ∘𝑓
− 𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ (𝑀 + 𝑁))) |
| 102 | 101 | ralrimiva 2966 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (((𝐴 ∘𝑓
− 𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ (𝑀 + 𝑁))) |
| 103 | | plyco0 23948 |
. . . . 5
⊢ (((𝑀 + 𝑁) ∈ ℕ0 ∧ (𝐴 ∘𝑓
− 𝐵):ℕ0⟶ℂ) →
(((𝐴
∘𝑓 − 𝐵) “
(ℤ≥‘((𝑀 + 𝑁) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0
(((𝐴
∘𝑓 − 𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ (𝑀 + 𝑁)))) |
| 104 | 5, 18, 103 | syl2anc 693 |
. . . 4
⊢ (𝜑 → (((𝐴 ∘𝑓 − 𝐵) “
(ℤ≥‘((𝑀 + 𝑁) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0
(((𝐴
∘𝑓 − 𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ (𝑀 + 𝑁)))) |
| 105 | 102, 104 | mpbird 247 |
. . 3
⊢ (𝜑 → ((𝐴 ∘𝑓 − 𝐵) “
(ℤ≥‘((𝑀 + 𝑁) + 1))) = {0}) |
| 106 | | df-0p 23437 |
. . . . 5
⊢
0𝑝 = (ℂ × {0}) |
| 107 | | fconstmpt 5163 |
. . . . 5
⊢ (ℂ
× {0}) = (𝑧 ∈
ℂ ↦ 0) |
| 108 | 106, 107 | eqtri 2644 |
. . . 4
⊢
0𝑝 = (𝑧 ∈ ℂ ↦ 0) |
| 109 | | elfznn0 12433 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...(𝑀 + 𝑁)) → 𝑘 ∈ ℕ0) |
| 110 | 38 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴 ∘𝑓
− 𝐵)‘𝑘) = ((𝐴‘𝑘) − (𝐵‘𝑘))) |
| 111 | 110 | oveq1d 6665 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴 ∘𝑓
− 𝐵)‘𝑘) · (𝑧↑𝑘)) = (((𝐴‘𝑘) − (𝐵‘𝑘)) · (𝑧↑𝑘))) |
| 112 | 12 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ) |
| 113 | 112 | ffvelrnda 6359 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 114 | 15 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐵:ℕ0⟶ℂ) |
| 115 | 114 | ffvelrnda 6359 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐵‘𝑘) ∈ ℂ) |
| 116 | | expcl 12878 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑧↑𝑘) ∈
ℂ) |
| 117 | 116 | adantll 750 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑧↑𝑘) ∈ ℂ) |
| 118 | 113, 115,
117 | subdird 10487 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴‘𝑘) − (𝐵‘𝑘)) · (𝑧↑𝑘)) = (((𝐴‘𝑘) · (𝑧↑𝑘)) − ((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 119 | 111, 118 | eqtrd 2656 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴 ∘𝑓
− 𝐵)‘𝑘) · (𝑧↑𝑘)) = (((𝐴‘𝑘) · (𝑧↑𝑘)) − ((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 120 | 109, 119 | sylan2 491 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑀 + 𝑁))) → (((𝐴 ∘𝑓 − 𝐵)‘𝑘) · (𝑧↑𝑘)) = (((𝐴‘𝑘) · (𝑧↑𝑘)) − ((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 121 | 120 | sumeq2dv 14433 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴 ∘𝑓 − 𝐵)‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴‘𝑘) · (𝑧↑𝑘)) − ((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 122 | | fzfid 12772 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...(𝑀 + 𝑁)) ∈ Fin) |
| 123 | 113, 117 | mulcld 10060 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 124 | 109, 123 | sylan2 491 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑀 + 𝑁))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 125 | 115, 117 | mulcld 10060 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 126 | 109, 125 | sylan2 491 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑀 + 𝑁))) → ((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 127 | 122, 124,
126 | fsumsub 14520 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴‘𝑘) · (𝑧↑𝑘)) − ((𝐵‘𝑘) · (𝑧↑𝑘))) = (Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴‘𝑘) · (𝑧↑𝑘)) − Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 128 | 122, 124 | fsumcl 14464 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 129 | | coeeu.8 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| 130 | | coeeu.9 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 131 | 129, 130 | eqtr3d 2658 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 132 | 131 | fveq1d 6193 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))‘𝑧) = ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))‘𝑧)) |
| 133 | 132 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))‘𝑧) = ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))‘𝑧)) |
| 134 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) |
| 135 | | sumex 14418 |
. . . . . . . . . 10
⊢
Σ𝑘 ∈
(0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ V |
| 136 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))) |
| 137 | 136 | fvmpt2 6291 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℂ ∧
Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ V) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))‘𝑧) = Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))) |
| 138 | 134, 135,
137 | sylancl 694 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))‘𝑧) = Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))) |
| 139 | | fzss2 12381 |
. . . . . . . . . . . 12
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘𝑀) → (0...𝑀) ⊆ (0...(𝑀 + 𝑁))) |
| 140 | 56, 139 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (0...𝑀) ⊆ (0...(𝑀 + 𝑁))) |
| 141 | 140 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑀) ⊆ (0...(𝑀 + 𝑁))) |
| 142 | 141 | sselda 3603 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ (0...(𝑀 + 𝑁))) |
| 143 | 142, 124 | syldan 487 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 144 | | eldifn 3733 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀)) → ¬ 𝑘 ∈ (0...𝑀)) |
| 145 | 144 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ¬ 𝑘 ∈ (0...𝑀)) |
| 146 | | eldifi 3732 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀)) → 𝑘 ∈ (0...(𝑀 + 𝑁))) |
| 147 | 146, 109 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀)) → 𝑘 ∈ ℕ0) |
| 148 | | simpr 477 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
| 149 | 148, 48 | syl6eleq 2711 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
(ℤ≥‘0)) |
| 150 | 50 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈
ℤ) |
| 151 | | elfz5 12334 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈
(ℤ≥‘0) ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ (0...𝑀) ↔ 𝑘 ≤ 𝑀)) |
| 152 | 149, 150,
151 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (0...𝑀) ↔ 𝑘 ≤ 𝑀)) |
| 153 | 68, 152 | sylibrd 249 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ∈ (0...𝑀))) |
| 154 | 153 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ∈ (0...𝑀))) |
| 155 | 154 | necon1bd 2812 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (¬
𝑘 ∈ (0...𝑀) → (𝐴‘𝑘) = 0)) |
| 156 | 147, 155 | sylan2 491 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (¬ 𝑘 ∈ (0...𝑀) → (𝐴‘𝑘) = 0)) |
| 157 | 145, 156 | mpd 15 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝐴‘𝑘) = 0) |
| 158 | 157 | oveq1d 6665 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = (0 · (𝑧↑𝑘))) |
| 159 | 134, 147,
116 | syl2an 494 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝑧↑𝑘) ∈ ℂ) |
| 160 | 159 | mul02d 10234 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (0 · (𝑧↑𝑘)) = 0) |
| 161 | 158, 160 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = 0) |
| 162 | 141, 143,
161, 122 | fsumss 14456 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴‘𝑘) · (𝑧↑𝑘))) |
| 163 | 138, 162 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))‘𝑧) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴‘𝑘) · (𝑧↑𝑘))) |
| 164 | | sumex 14418 |
. . . . . . . . . 10
⊢
Σ𝑘 ∈
(0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ V |
| 165 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))) |
| 166 | 165 | fvmpt2 6291 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℂ ∧
Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ V) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))‘𝑧) = Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))) |
| 167 | 134, 164,
166 | sylancl 694 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))‘𝑧) = Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))) |
| 168 | | fzss2 12381 |
. . . . . . . . . . . 12
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘𝑁) → (0...𝑁) ⊆ (0...(𝑀 + 𝑁))) |
| 169 | 80, 168 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (0...𝑁) ⊆ (0...(𝑀 + 𝑁))) |
| 170 | 169 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑁) ⊆ (0...(𝑀 + 𝑁))) |
| 171 | 170 | sselda 3603 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...(𝑀 + 𝑁))) |
| 172 | 171, 126 | syldan 487 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 173 | | eldifn 3733 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁)) → ¬ 𝑘 ∈ (0...𝑁)) |
| 174 | 173 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → ¬ 𝑘 ∈ (0...𝑁)) |
| 175 | | eldifi 3732 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁)) → 𝑘 ∈ (0...(𝑀 + 𝑁))) |
| 176 | 175, 109 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 177 | 75 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈
ℤ) |
| 178 | | elfz5 12334 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈
(ℤ≥‘0) ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ≤ 𝑁)) |
| 179 | 149, 177,
178 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ≤ 𝑁)) |
| 180 | 91, 179 | sylibrd 249 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐵‘𝑘) ≠ 0 → 𝑘 ∈ (0...𝑁))) |
| 181 | 180 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐵‘𝑘) ≠ 0 → 𝑘 ∈ (0...𝑁))) |
| 182 | 181 | necon1bd 2812 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (¬
𝑘 ∈ (0...𝑁) → (𝐵‘𝑘) = 0)) |
| 183 | 176, 182 | sylan2 491 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → (¬ 𝑘 ∈ (0...𝑁) → (𝐵‘𝑘) = 0)) |
| 184 | 174, 183 | mpd 15 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → (𝐵‘𝑘) = 0) |
| 185 | 184 | oveq1d 6665 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → ((𝐵‘𝑘) · (𝑧↑𝑘)) = (0 · (𝑧↑𝑘))) |
| 186 | 134, 176,
116 | syl2an 494 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → (𝑧↑𝑘) ∈ ℂ) |
| 187 | 186 | mul02d 10234 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → (0 · (𝑧↑𝑘)) = 0) |
| 188 | 185, 187 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → ((𝐵‘𝑘) · (𝑧↑𝑘)) = 0) |
| 189 | 170, 172,
188, 122 | fsumss 14456 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐵‘𝑘) · (𝑧↑𝑘))) |
| 190 | 167, 189 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))‘𝑧) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐵‘𝑘) · (𝑧↑𝑘))) |
| 191 | 133, 163,
190 | 3eqtr3d 2664 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐵‘𝑘) · (𝑧↑𝑘))) |
| 192 | 128, 191 | subeq0bd 10456 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴‘𝑘) · (𝑧↑𝑘)) − Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐵‘𝑘) · (𝑧↑𝑘))) = 0) |
| 193 | 121, 127,
192 | 3eqtrrd 2661 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 0 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴 ∘𝑓 − 𝐵)‘𝑘) · (𝑧↑𝑘))) |
| 194 | 193 | mpteq2dva 4744 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ 0) = (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴 ∘𝑓 − 𝐵)‘𝑘) · (𝑧↑𝑘)))) |
| 195 | 108, 194 | syl5eq 2668 |
. . 3
⊢ (𝜑 → 0𝑝 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴 ∘𝑓 − 𝐵)‘𝑘) · (𝑧↑𝑘)))) |
| 196 | 2, 5, 27, 105, 195 | plyeq0 23967 |
. 2
⊢ (𝜑 → (𝐴 ∘𝑓 − 𝐵) = (ℕ0 ×
{0})) |
| 197 | | ofsubeq0 11017 |
. . 3
⊢
((ℕ0 ∈ V ∧ 𝐴:ℕ0⟶ℂ ∧
𝐵:ℕ0⟶ℂ) →
((𝐴
∘𝑓 − 𝐵) = (ℕ0 × {0}) ↔
𝐴 = 𝐵)) |
| 198 | 16, 12, 15, 197 | syl3anc 1326 |
. 2
⊢ (𝜑 → ((𝐴 ∘𝑓 − 𝐵) = (ℕ0 ×
{0}) ↔ 𝐴 = 𝐵)) |
| 199 | 196, 198 | mpbid 222 |
1
⊢ (𝜑 → 𝐴 = 𝐵) |