Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemsv3 Structured version   Visualization version   Unicode version

Theorem eulerpartlemsv3 30423
Description: Lemma for eulerpart 30444. Value of the sum of a finite partition  A (Contributed by Thierry Arnoux, 19-Aug-2018.)
Hypotheses
Ref Expression
eulerpartlems.r  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
eulerpartlems.s  |-  S  =  ( f  e.  ( ( NN0  ^m  NN )  i^i  R )  |->  sum_ k  e.  NN  (
( f `  k
)  x.  k ) )
Assertion
Ref Expression
eulerpartlemsv3  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( S `  A )  =  sum_ k  e.  ( 1 ... ( S `
 A ) ) ( ( A `  k )  x.  k
) )
Distinct variable groups:    f, k, A    R, f, k    S, k
Allowed substitution hint:    S( f)

Proof of Theorem eulerpartlemsv3
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 eulerpartlems.r . . 3  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
2 eulerpartlems.s . . 3  |-  S  =  ( f  e.  ( ( NN0  ^m  NN )  i^i  R )  |->  sum_ k  e.  NN  (
( f `  k
)  x.  k ) )
31, 2eulerpartlemsv1 30418 . 2  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( S `  A )  =  sum_ k  e.  NN  ( ( A `  k )  x.  k
) )
4 fzssuz 12382 . . . . 5  |-  ( 1 ... ( S `  A ) )  C_  ( ZZ>= `  1 )
5 nnuz 11723 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
64, 5sseqtr4i 3638 . . . 4  |-  ( 1 ... ( S `  A ) )  C_  NN
76a1i 11 . . 3  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  (
1 ... ( S `  A ) )  C_  NN )
81, 2eulerpartlemelr 30419 . . . . . . . 8  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( A : NN --> NN0  /\  ( `' A " NN )  e.  Fin ) )
98simpld 475 . . . . . . 7  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  A : NN --> NN0 )
109adantr 481 . . . . . 6  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( 1 ... ( S `  A ) ) )  ->  A : NN --> NN0 )
117sselda 3603 . . . . . 6  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( 1 ... ( S `  A ) ) )  ->  k  e.  NN )
1210, 11ffvelrnd 6360 . . . . 5  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( 1 ... ( S `  A ) ) )  ->  ( A `  k )  e.  NN0 )
1312nn0cnd 11353 . . . 4  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( 1 ... ( S `  A ) ) )  ->  ( A `  k )  e.  CC )
1411nncnd 11036 . . . 4  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( 1 ... ( S `  A ) ) )  ->  k  e.  CC )
1513, 14mulcld 10060 . . 3  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( 1 ... ( S `  A ) ) )  ->  ( ( A `
 k )  x.  k )  e.  CC )
161, 2eulerpartlems 30422 . . . . . . . . 9  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  t  e.  ( ZZ>= `  ( ( S `  A )  +  1 ) ) )  -> 
( A `  t
)  =  0 )
1716ralrimiva 2966 . . . . . . . 8  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  A. t  e.  ( ZZ>= `  ( ( S `  A )  +  1 ) ) ( A `  t
)  =  0 )
18 fveq2 6191 . . . . . . . . . 10  |-  ( k  =  t  ->  ( A `  k )  =  ( A `  t ) )
1918eqeq1d 2624 . . . . . . . . 9  |-  ( k  =  t  ->  (
( A `  k
)  =  0  <->  ( A `  t )  =  0 ) )
2019cbvralv 3171 . . . . . . . 8  |-  ( A. k  e.  ( ZZ>= `  ( ( S `  A )  +  1 ) ) ( A `
 k )  =  0  <->  A. t  e.  (
ZZ>= `  ( ( S `
 A )  +  1 ) ) ( A `  t )  =  0 )
2117, 20sylibr 224 . . . . . . 7  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  A. k  e.  ( ZZ>= `  ( ( S `  A )  +  1 ) ) ( A `  k
)  =  0 )
221, 2eulerpartlemsf 30421 . . . . . . . . . 10  |-  S :
( ( NN0  ^m  NN )  i^i  R ) --> NN0
2322ffvelrni 6358 . . . . . . . . 9  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( S `  A )  e.  NN0 )
24 nndiffz1 29548 . . . . . . . . 9  |-  ( ( S `  A )  e.  NN0  ->  ( NN 
\  ( 1 ... ( S `  A
) ) )  =  ( ZZ>= `  ( ( S `  A )  +  1 ) ) )
2523, 24syl 17 . . . . . . . 8  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( NN  \  ( 1 ... ( S `  A
) ) )  =  ( ZZ>= `  ( ( S `  A )  +  1 ) ) )
2625raleqdv 3144 . . . . . . 7  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( A. k  e.  ( NN  \  ( 1 ... ( S `  A
) ) ) ( A `  k )  =  0  <->  A. k  e.  ( ZZ>= `  ( ( S `  A )  +  1 ) ) ( A `  k
)  =  0 ) )
2721, 26mpbird 247 . . . . . 6  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  A. k  e.  ( NN  \  (
1 ... ( S `  A ) ) ) ( A `  k
)  =  0 )
2827r19.21bi 2932 . . . . 5  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( NN  \  ( 1 ... ( S `  A )
) ) )  -> 
( A `  k
)  =  0 )
2928oveq1d 6665 . . . 4  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( NN  \  ( 1 ... ( S `  A )
) ) )  -> 
( ( A `  k )  x.  k
)  =  ( 0  x.  k ) )
30 simpr 477 . . . . . . 7  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( NN  \  ( 1 ... ( S `  A )
) ) )  -> 
k  e.  ( NN 
\  ( 1 ... ( S `  A
) ) ) )
3130eldifad 3586 . . . . . 6  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( NN  \  ( 1 ... ( S `  A )
) ) )  -> 
k  e.  NN )
3231nncnd 11036 . . . . 5  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( NN  \  ( 1 ... ( S `  A )
) ) )  -> 
k  e.  CC )
3332mul02d 10234 . . . 4  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( NN  \  ( 1 ... ( S `  A )
) ) )  -> 
( 0  x.  k
)  =  0 )
3429, 33eqtrd 2656 . . 3  |-  ( ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  /\  k  e.  ( NN  \  ( 1 ... ( S `  A )
) ) )  -> 
( ( A `  k )  x.  k
)  =  0 )
355eqimssi 3659 . . . 4  |-  NN  C_  ( ZZ>= `  1 )
3635a1i 11 . . 3  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  NN  C_  ( ZZ>= `  1 )
)
377, 15, 34, 36sumss 14455 . 2  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  sum_ k  e.  ( 1 ... ( S `  A )
) ( ( A `
 k )  x.  k )  =  sum_ k  e.  NN  (
( A `  k
)  x.  k ) )
383, 37eqtr4d 2659 1  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( S `  A )  =  sum_ k  e.  ( 1 ... ( S `
 A ) ) ( ( A `  k )  x.  k
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912    \ cdif 3571    i^i cin 3573    C_ wss 3574    |-> cmpt 4729   `'ccnv 5113   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Fincfn 7955   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   NNcn 11020   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417
This theorem is referenced by:  eulerpartlemgc  30424
  Copyright terms: Public domain W3C validator