MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem6 Structured version   Visualization version   GIF version

Theorem evlslem6 19513
Description: Lemma for evlseu 19516. Finiteness and consistency of the top-level sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 26-Jul-2019.)
Hypotheses
Ref Expression
evlslem1.p 𝑃 = (𝐼 mPoly 𝑅)
evlslem1.b 𝐵 = (Base‘𝑃)
evlslem1.c 𝐶 = (Base‘𝑆)
evlslem1.k 𝐾 = (Base‘𝑅)
evlslem1.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlslem1.t 𝑇 = (mulGrp‘𝑆)
evlslem1.x = (.g𝑇)
evlslem1.m · = (.r𝑆)
evlslem1.v 𝑉 = (𝐼 mVar 𝑅)
evlslem1.e 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))
evlslem1.i (𝜑𝐼 ∈ V)
evlslem1.r (𝜑𝑅 ∈ CRing)
evlslem1.s (𝜑𝑆 ∈ CRing)
evlslem1.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
evlslem1.g (𝜑𝐺:𝐼𝐶)
evlslem6.y (𝜑𝑌𝐵)
Assertion
Ref Expression
evlslem6 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) finSupp (0g𝑆)))
Distinct variable groups:   𝜑,𝑏   𝐶,𝑏   𝐷,𝑏   ,𝐼   𝑅,𝑏   𝑆,𝑏   𝑌,𝑏   ,𝑏
Allowed substitution hints:   𝜑(,𝑝)   𝐵(,𝑝,𝑏)   𝐶(,𝑝)   𝐷(,𝑝)   𝑃(,𝑝,𝑏)   𝑅(,𝑝)   𝑆(,𝑝)   𝑇(,𝑝,𝑏)   · (,𝑝,𝑏)   𝐸(,𝑝,𝑏)   (,𝑝,𝑏)   𝐹(,𝑝,𝑏)   𝐺(,𝑝,𝑏)   𝐼(𝑝,𝑏)   𝐾(,𝑝,𝑏)   𝑉(,𝑝,𝑏)   𝑌(,𝑝)

Proof of Theorem evlslem6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 evlslem1.s . . . . . 6 (𝜑𝑆 ∈ CRing)
2 crngring 18558 . . . . . 6 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
31, 2syl 17 . . . . 5 (𝜑𝑆 ∈ Ring)
43adantr 481 . . . 4 ((𝜑𝑏𝐷) → 𝑆 ∈ Ring)
5 evlslem1.f . . . . . . 7 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
6 evlslem1.k . . . . . . . 8 𝐾 = (Base‘𝑅)
7 evlslem1.c . . . . . . . 8 𝐶 = (Base‘𝑆)
86, 7rhmf 18726 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐾𝐶)
95, 8syl 17 . . . . . 6 (𝜑𝐹:𝐾𝐶)
109adantr 481 . . . . 5 ((𝜑𝑏𝐷) → 𝐹:𝐾𝐶)
11 evlslem1.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑅)
12 evlslem1.b . . . . . . 7 𝐵 = (Base‘𝑃)
13 evlslem1.d . . . . . . 7 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
14 evlslem6.y . . . . . . 7 (𝜑𝑌𝐵)
1511, 6, 12, 13, 14mplelf 19433 . . . . . 6 (𝜑𝑌:𝐷𝐾)
1615ffvelrnda 6359 . . . . 5 ((𝜑𝑏𝐷) → (𝑌𝑏) ∈ 𝐾)
1710, 16ffvelrnd 6360 . . . 4 ((𝜑𝑏𝐷) → (𝐹‘(𝑌𝑏)) ∈ 𝐶)
18 evlslem1.t . . . . . 6 𝑇 = (mulGrp‘𝑆)
1918, 7mgpbas 18495 . . . . 5 𝐶 = (Base‘𝑇)
20 evlslem1.x . . . . 5 = (.g𝑇)
21 eqid 2622 . . . . 5 (0g𝑇) = (0g𝑇)
2218crngmgp 18555 . . . . . . 7 (𝑆 ∈ CRing → 𝑇 ∈ CMnd)
231, 22syl 17 . . . . . 6 (𝜑𝑇 ∈ CMnd)
2423adantr 481 . . . . 5 ((𝜑𝑏𝐷) → 𝑇 ∈ CMnd)
25 simpr 477 . . . . 5 ((𝜑𝑏𝐷) → 𝑏𝐷)
26 evlslem1.g . . . . . 6 (𝜑𝐺:𝐼𝐶)
2726adantr 481 . . . . 5 ((𝜑𝑏𝐷) → 𝐺:𝐼𝐶)
28 evlslem1.i . . . . . 6 (𝜑𝐼 ∈ V)
2928adantr 481 . . . . 5 ((𝜑𝑏𝐷) → 𝐼 ∈ V)
3013, 19, 20, 21, 24, 25, 27, 29psrbagev2 19511 . . . 4 ((𝜑𝑏𝐷) → (𝑇 Σg (𝑏𝑓 𝐺)) ∈ 𝐶)
31 evlslem1.m . . . . 5 · = (.r𝑆)
327, 31ringcl 18561 . . . 4 ((𝑆 ∈ Ring ∧ (𝐹‘(𝑌𝑏)) ∈ 𝐶 ∧ (𝑇 Σg (𝑏𝑓 𝐺)) ∈ 𝐶) → ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))) ∈ 𝐶)
334, 17, 30, 32syl3anc 1326 . . 3 ((𝜑𝑏𝐷) → ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))) ∈ 𝐶)
34 eqid 2622 . . 3 (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))
3533, 34fmptd 6385 . 2 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))):𝐷𝐶)
36 ovexd 6680 . . . . 5 (𝜑 → (ℕ0𝑚 𝐼) ∈ V)
3713, 36rabexd 4814 . . . 4 (𝜑𝐷 ∈ V)
38 mptexg 6484 . . . 4 (𝐷 ∈ V → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) ∈ V)
3937, 38syl 17 . . 3 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) ∈ V)
40 funmpt 5926 . . . 4 Fun (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))
4140a1i 11 . . 3 (𝜑 → Fun (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))))
42 fvexd 6203 . . 3 (𝜑 → (0g𝑆) ∈ V)
43 eqid 2622 . . . . 5 (0g𝑅) = (0g𝑅)
44 evlslem1.r . . . . 5 (𝜑𝑅 ∈ CRing)
4511, 12, 43, 14, 44mplelsfi 19491 . . . 4 (𝜑𝑌 finSupp (0g𝑅))
4645fsuppimpd 8282 . . 3 (𝜑 → (𝑌 supp (0g𝑅)) ∈ Fin)
4715feqmptd 6249 . . . . . . 7 (𝜑𝑌 = (𝑏𝐷 ↦ (𝑌𝑏)))
4847oveq1d 6665 . . . . . 6 (𝜑 → (𝑌 supp (0g𝑅)) = ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)))
49 eqimss2 3658 . . . . . 6 ((𝑌 supp (0g𝑅)) = ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)) → ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)) ⊆ (𝑌 supp (0g𝑅)))
5048, 49syl 17 . . . . 5 (𝜑 → ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)) ⊆ (𝑌 supp (0g𝑅)))
51 rhmghm 18725 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
52 eqid 2622 . . . . . . 7 (0g𝑆) = (0g𝑆)
5343, 52ghmid 17666 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
545, 51, 533syl 18 . . . . 5 (𝜑 → (𝐹‘(0g𝑅)) = (0g𝑆))
55 fvexd 6203 . . . . 5 ((𝜑𝑏𝐷) → (𝑌𝑏) ∈ V)
56 fvexd 6203 . . . . 5 (𝜑 → (0g𝑅) ∈ V)
5750, 54, 55, 56suppssfv 7331 . . . 4 (𝜑 → ((𝑏𝐷 ↦ (𝐹‘(𝑌𝑏))) supp (0g𝑆)) ⊆ (𝑌 supp (0g𝑅)))
587, 31, 52ringlz 18587 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑥𝐶) → ((0g𝑆) · 𝑥) = (0g𝑆))
593, 58sylan 488 . . . 4 ((𝜑𝑥𝐶) → ((0g𝑆) · 𝑥) = (0g𝑆))
60 fvexd 6203 . . . 4 ((𝜑𝑏𝐷) → (𝐹‘(𝑌𝑏)) ∈ V)
6157, 59, 60, 30, 42suppssov1 7327 . . 3 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) supp (0g𝑆)) ⊆ (𝑌 supp (0g𝑅)))
62 suppssfifsupp 8290 . . 3 ((((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) ∈ V ∧ Fun (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) ∧ (0g𝑆) ∈ V) ∧ ((𝑌 supp (0g𝑅)) ∈ Fin ∧ ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) supp (0g𝑆)) ⊆ (𝑌 supp (0g𝑅)))) → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) finSupp (0g𝑆))
6339, 41, 42, 46, 61, 62syl32anc 1334 . 2 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) finSupp (0g𝑆))
6435, 63jca 554 1 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) finSupp (0g𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  wss 3574   class class class wbr 4653  cmpt 4729  ccnv 5113  cima 5117  Fun wfun 5882  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895   supp csupp 7295  𝑚 cmap 7857  Fincfn 7955   finSupp cfsupp 8275  cn 11020  0cn0 11292  Basecbs 15857  .rcmulr 15942  0gc0g 16100   Σg cgsu 16101  .gcmg 17540   GrpHom cghm 17657  CMndccmn 18193  mulGrpcmgp 18489  Ringcrg 18547  CRingccrg 18548   RingHom crh 18712   mVar cmvr 19352   mPoly cmpl 19353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-mulg 17541  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-rnghom 18715  df-psr 19356  df-mpl 19358
This theorem is referenced by:  evlslem1  19515
  Copyright terms: Public domain W3C validator