![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fprodge0 | Structured version Visualization version GIF version |
Description: If all the terms of a finite product are nonnegative, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fprodge0.kph | ⊢ Ⅎ𝑘𝜑 |
fprodge0.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fprodge0.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
fprodge0.0leb | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) |
Ref | Expression |
---|---|
fprodge0 | ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodge0.kph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | elrege0 12278 | . . . . . . 7 ⊢ (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) | |
3 | 2 | simplbi 476 | . . . . . 6 ⊢ (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℝ) |
4 | 3 | ssriv 3607 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ |
5 | ax-resscn 9993 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
6 | 4, 5 | sstri 3612 | . . . 4 ⊢ (0[,)+∞) ⊆ ℂ |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → (0[,)+∞) ⊆ ℂ) |
8 | ge0mulcl 12285 | . . . 4 ⊢ ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞)) | |
9 | 8 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 · 𝑦) ∈ (0[,)+∞)) |
10 | fprodge0.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
11 | fprodge0.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
12 | fprodge0.0leb | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) | |
13 | elrege0 12278 | . . . 4 ⊢ (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | |
14 | 11, 12, 13 | sylanbrc 698 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
15 | 1re 10039 | . . . . . 6 ⊢ 1 ∈ ℝ | |
16 | 0le1 10551 | . . . . . 6 ⊢ 0 ≤ 1 | |
17 | ltpnf 11954 | . . . . . . 7 ⊢ (1 ∈ ℝ → 1 < +∞) | |
18 | 15, 17 | ax-mp 5 | . . . . . 6 ⊢ 1 < +∞ |
19 | 15, 16, 18 | 3pm3.2i 1239 | . . . . 5 ⊢ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞) |
20 | 0e0icopnf 12282 | . . . . . . 7 ⊢ 0 ∈ (0[,)+∞) | |
21 | 4, 20 | sselii 3600 | . . . . . 6 ⊢ 0 ∈ ℝ |
22 | pnfxr 10092 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
23 | elico2 12237 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞))) | |
24 | 21, 22, 23 | mp2an 708 | . . . . 5 ⊢ (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)) |
25 | 19, 24 | mpbir 221 | . . . 4 ⊢ 1 ∈ (0[,)+∞) |
26 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ (0[,)+∞)) |
27 | 1, 7, 9, 10, 14, 26 | fprodcllemf 14688 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) |
28 | 0xr 10086 | . . . 4 ⊢ 0 ∈ ℝ* | |
29 | 28 | a1i 11 | . . 3 ⊢ (∏𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞) → 0 ∈ ℝ*) |
30 | 22 | a1i 11 | . . 3 ⊢ (∏𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞) → +∞ ∈ ℝ*) |
31 | id 22 | . . 3 ⊢ (∏𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞) → ∏𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) | |
32 | icogelb 12225 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) → 0 ≤ ∏𝑘 ∈ 𝐴 𝐵) | |
33 | 29, 30, 31, 32 | syl3anc 1326 | . 2 ⊢ (∏𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞) → 0 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
34 | 27, 33 | syl 17 | 1 ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 Ⅎwnf 1708 ∈ wcel 1990 ⊆ wss 3574 class class class wbr 4653 (class class class)co 6650 Fincfn 7955 ℂcc 9934 ℝcr 9935 0cc0 9936 1c1 9937 · cmul 9941 +∞cpnf 10071 ℝ*cxr 10073 < clt 10074 ≤ cle 10075 [,)cico 12177 ∏cprod 14635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-ico 12181 df-fz 12327 df-fzo 12466 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-prod 14636 |
This theorem is referenced by: fprodle 14727 hoiprodcl 40761 hoiprodcl3 40794 hoidmvcl 40796 hsphoidmvle2 40799 hsphoidmvle 40800 |
Copyright terms: Public domain | W3C validator |