![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmfibas | Structured version Visualization version GIF version |
Description: The base set of the finite free module as a set exponential. (Contributed by AV, 6-Dec-2018.) |
Ref | Expression |
---|---|
frlmfibas.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
frlmfibas.n | ⊢ 𝑁 = (Base‘𝑅) |
Ref | Expression |
---|---|
frlmfibas | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → (𝑁 ↑𝑚 𝐼) = (Base‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 7879 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑁 ↑𝑚 𝐼) → 𝑎:𝐼⟶𝑁) | |
2 | 1 | adantl 482 | . . . . . 6 ⊢ ((𝐼 ∈ Fin ∧ 𝑎 ∈ (𝑁 ↑𝑚 𝐼)) → 𝑎:𝐼⟶𝑁) |
3 | simpl 473 | . . . . . 6 ⊢ ((𝐼 ∈ Fin ∧ 𝑎 ∈ (𝑁 ↑𝑚 𝐼)) → 𝐼 ∈ Fin) | |
4 | fvexd 6203 | . . . . . 6 ⊢ ((𝐼 ∈ Fin ∧ 𝑎 ∈ (𝑁 ↑𝑚 𝐼)) → (0g‘𝑅) ∈ V) | |
5 | 2, 3, 4 | fdmfifsupp 8285 | . . . . 5 ⊢ ((𝐼 ∈ Fin ∧ 𝑎 ∈ (𝑁 ↑𝑚 𝐼)) → 𝑎 finSupp (0g‘𝑅)) |
6 | 5 | ralrimiva 2966 | . . . 4 ⊢ (𝐼 ∈ Fin → ∀𝑎 ∈ (𝑁 ↑𝑚 𝐼)𝑎 finSupp (0g‘𝑅)) |
7 | 6 | adantl 482 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → ∀𝑎 ∈ (𝑁 ↑𝑚 𝐼)𝑎 finSupp (0g‘𝑅)) |
8 | rabid2 3118 | . . 3 ⊢ ((𝑁 ↑𝑚 𝐼) = {𝑎 ∈ (𝑁 ↑𝑚 𝐼) ∣ 𝑎 finSupp (0g‘𝑅)} ↔ ∀𝑎 ∈ (𝑁 ↑𝑚 𝐼)𝑎 finSupp (0g‘𝑅)) | |
9 | 7, 8 | sylibr 224 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → (𝑁 ↑𝑚 𝐼) = {𝑎 ∈ (𝑁 ↑𝑚 𝐼) ∣ 𝑎 finSupp (0g‘𝑅)}) |
10 | frlmfibas.f | . . 3 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
11 | frlmfibas.n | . . 3 ⊢ 𝑁 = (Base‘𝑅) | |
12 | eqid 2622 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
13 | eqid 2622 | . . 3 ⊢ {𝑎 ∈ (𝑁 ↑𝑚 𝐼) ∣ 𝑎 finSupp (0g‘𝑅)} = {𝑎 ∈ (𝑁 ↑𝑚 𝐼) ∣ 𝑎 finSupp (0g‘𝑅)} | |
14 | 10, 11, 12, 13 | frlmbas 20099 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → {𝑎 ∈ (𝑁 ↑𝑚 𝐼) ∣ 𝑎 finSupp (0g‘𝑅)} = (Base‘𝐹)) |
15 | 9, 14 | eqtrd 2656 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → (𝑁 ↑𝑚 𝐼) = (Base‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 {crab 2916 Vcvv 3200 class class class wbr 4653 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 Fincfn 7955 finSupp cfsupp 8275 Basecbs 15857 0gc0g 16100 freeLMod cfrlm 20090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-hom 15966 df-cco 15967 df-0g 16102 df-prds 16108 df-pws 16110 df-sra 19172 df-rgmod 19173 df-dsmm 20076 df-frlm 20091 |
This theorem is referenced by: frlmbas3 20115 mamudm 20194 matbas2 20227 matunitlindflem1 33405 matunitlindflem2 33406 matunitlindf 33407 zlmodzxzel 42133 aacllem 42547 |
Copyright terms: Public domain | W3C validator |