MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdind Structured version   Visualization version   GIF version

Theorem wrdind 13476
Description: Perform induction over the structure of a word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Hypotheses
Ref Expression
wrdind.1 (𝑥 = ∅ → (𝜑𝜓))
wrdind.2 (𝑥 = 𝑦 → (𝜑𝜒))
wrdind.3 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝜑𝜃))
wrdind.4 (𝑥 = 𝐴 → (𝜑𝜏))
wrdind.5 𝜓
wrdind.6 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (𝜒𝜃))
Assertion
Ref Expression
wrdind (𝐴 ∈ Word 𝐵𝜏)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝑧,𝐵   𝜒,𝑥   𝜑,𝑦,𝑧   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑦,𝑧)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)   𝐴(𝑦,𝑧)

Proof of Theorem wrdind
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lencl 13324 . . 3 (𝐴 ∈ Word 𝐵 → (#‘𝐴) ∈ ℕ0)
2 eqeq2 2633 . . . . . 6 (𝑛 = 0 → ((#‘𝑥) = 𝑛 ↔ (#‘𝑥) = 0))
32imbi1d 331 . . . . 5 (𝑛 = 0 → (((#‘𝑥) = 𝑛𝜑) ↔ ((#‘𝑥) = 0 → 𝜑)))
43ralbidv 2986 . . . 4 (𝑛 = 0 → (∀𝑥 ∈ Word 𝐵((#‘𝑥) = 𝑛𝜑) ↔ ∀𝑥 ∈ Word 𝐵((#‘𝑥) = 0 → 𝜑)))
5 eqeq2 2633 . . . . . 6 (𝑛 = 𝑚 → ((#‘𝑥) = 𝑛 ↔ (#‘𝑥) = 𝑚))
65imbi1d 331 . . . . 5 (𝑛 = 𝑚 → (((#‘𝑥) = 𝑛𝜑) ↔ ((#‘𝑥) = 𝑚𝜑)))
76ralbidv 2986 . . . 4 (𝑛 = 𝑚 → (∀𝑥 ∈ Word 𝐵((#‘𝑥) = 𝑛𝜑) ↔ ∀𝑥 ∈ Word 𝐵((#‘𝑥) = 𝑚𝜑)))
8 eqeq2 2633 . . . . . 6 (𝑛 = (𝑚 + 1) → ((#‘𝑥) = 𝑛 ↔ (#‘𝑥) = (𝑚 + 1)))
98imbi1d 331 . . . . 5 (𝑛 = (𝑚 + 1) → (((#‘𝑥) = 𝑛𝜑) ↔ ((#‘𝑥) = (𝑚 + 1) → 𝜑)))
109ralbidv 2986 . . . 4 (𝑛 = (𝑚 + 1) → (∀𝑥 ∈ Word 𝐵((#‘𝑥) = 𝑛𝜑) ↔ ∀𝑥 ∈ Word 𝐵((#‘𝑥) = (𝑚 + 1) → 𝜑)))
11 eqeq2 2633 . . . . . 6 (𝑛 = (#‘𝐴) → ((#‘𝑥) = 𝑛 ↔ (#‘𝑥) = (#‘𝐴)))
1211imbi1d 331 . . . . 5 (𝑛 = (#‘𝐴) → (((#‘𝑥) = 𝑛𝜑) ↔ ((#‘𝑥) = (#‘𝐴) → 𝜑)))
1312ralbidv 2986 . . . 4 (𝑛 = (#‘𝐴) → (∀𝑥 ∈ Word 𝐵((#‘𝑥) = 𝑛𝜑) ↔ ∀𝑥 ∈ Word 𝐵((#‘𝑥) = (#‘𝐴) → 𝜑)))
14 hasheq0 13154 . . . . . 6 (𝑥 ∈ Word 𝐵 → ((#‘𝑥) = 0 ↔ 𝑥 = ∅))
15 wrdind.5 . . . . . . 7 𝜓
16 wrdind.1 . . . . . . 7 (𝑥 = ∅ → (𝜑𝜓))
1715, 16mpbiri 248 . . . . . 6 (𝑥 = ∅ → 𝜑)
1814, 17syl6bi 243 . . . . 5 (𝑥 ∈ Word 𝐵 → ((#‘𝑥) = 0 → 𝜑))
1918rgen 2922 . . . 4 𝑥 ∈ Word 𝐵((#‘𝑥) = 0 → 𝜑)
20 fveq2 6191 . . . . . . . 8 (𝑥 = 𝑦 → (#‘𝑥) = (#‘𝑦))
2120eqeq1d 2624 . . . . . . 7 (𝑥 = 𝑦 → ((#‘𝑥) = 𝑚 ↔ (#‘𝑦) = 𝑚))
22 wrdind.2 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜒))
2321, 22imbi12d 334 . . . . . 6 (𝑥 = 𝑦 → (((#‘𝑥) = 𝑚𝜑) ↔ ((#‘𝑦) = 𝑚𝜒)))
2423cbvralv 3171 . . . . 5 (∀𝑥 ∈ Word 𝐵((#‘𝑥) = 𝑚𝜑) ↔ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒))
25 swrdcl 13419 . . . . . . . . . . . 12 (𝑥 ∈ Word 𝐵 → (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ∈ Word 𝐵)
2625ad2antrl 764 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ∈ Word 𝐵)
27 simplr 792 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒))
28 simprl 794 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → 𝑥 ∈ Word 𝐵)
29 fzossfz 12488 . . . . . . . . . . . . . 14 (0..^(#‘𝑥)) ⊆ (0...(#‘𝑥))
30 simprr 796 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → (#‘𝑥) = (𝑚 + 1))
31 nn0p1nn 11332 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ)
3231ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → (𝑚 + 1) ∈ ℕ)
3330, 32eqeltrd 2701 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → (#‘𝑥) ∈ ℕ)
34 fzo0end 12560 . . . . . . . . . . . . . . 15 ((#‘𝑥) ∈ ℕ → ((#‘𝑥) − 1) ∈ (0..^(#‘𝑥)))
3533, 34syl 17 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → ((#‘𝑥) − 1) ∈ (0..^(#‘𝑥)))
3629, 35sseldi 3601 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → ((#‘𝑥) − 1) ∈ (0...(#‘𝑥)))
37 swrd0len 13422 . . . . . . . . . . . . 13 ((𝑥 ∈ Word 𝐵 ∧ ((#‘𝑥) − 1) ∈ (0...(#‘𝑥))) → (#‘(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩)) = ((#‘𝑥) − 1))
3828, 36, 37syl2anc 693 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → (#‘(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩)) = ((#‘𝑥) − 1))
3930oveq1d 6665 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → ((#‘𝑥) − 1) = ((𝑚 + 1) − 1))
40 nn0cn 11302 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
4140ad2antrr 762 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → 𝑚 ∈ ℂ)
42 ax-1cn 9994 . . . . . . . . . . . . 13 1 ∈ ℂ
43 pncan 10287 . . . . . . . . . . . . 13 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑚 + 1) − 1) = 𝑚)
4441, 42, 43sylancl 694 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → ((𝑚 + 1) − 1) = 𝑚)
4538, 39, 443eqtrd 2660 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → (#‘(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩)) = 𝑚)
46 fveq2 6191 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) → (#‘𝑦) = (#‘(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩)))
4746eqeq1d 2624 . . . . . . . . . . . . 13 (𝑦 = (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) → ((#‘𝑦) = 𝑚 ↔ (#‘(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩)) = 𝑚))
48 vex 3203 . . . . . . . . . . . . . . 15 𝑦 ∈ V
4948, 22sbcie 3470 . . . . . . . . . . . . . 14 ([𝑦 / 𝑥]𝜑𝜒)
50 dfsbcq 3437 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) → ([𝑦 / 𝑥]𝜑[(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) / 𝑥]𝜑))
5149, 50syl5bbr 274 . . . . . . . . . . . . 13 (𝑦 = (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) → (𝜒[(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) / 𝑥]𝜑))
5247, 51imbi12d 334 . . . . . . . . . . . 12 (𝑦 = (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) → (((#‘𝑦) = 𝑚𝜒) ↔ ((#‘(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩)) = 𝑚[(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) / 𝑥]𝜑)))
5352rspcv 3305 . . . . . . . . . . 11 ((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ∈ Word 𝐵 → (∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒) → ((#‘(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩)) = 𝑚[(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) / 𝑥]𝜑)))
5426, 27, 45, 53syl3c 66 . . . . . . . . . 10 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → [(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) / 𝑥]𝜑)
5533nnge1d 11063 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → 1 ≤ (#‘𝑥))
56 wrdlenge1n0 13340 . . . . . . . . . . . . . 14 (𝑥 ∈ Word 𝐵 → (𝑥 ≠ ∅ ↔ 1 ≤ (#‘𝑥)))
5756ad2antrl 764 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → (𝑥 ≠ ∅ ↔ 1 ≤ (#‘𝑥)))
5855, 57mpbird 247 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → 𝑥 ≠ ∅)
59 lswcl 13355 . . . . . . . . . . . 12 ((𝑥 ∈ Word 𝐵𝑥 ≠ ∅) → ( lastS ‘𝑥) ∈ 𝐵)
6028, 58, 59syl2anc 693 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → ( lastS ‘𝑥) ∈ 𝐵)
61 oveq1 6657 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) → (𝑦 ++ ⟨“𝑧”⟩) = ((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“𝑧”⟩))
6261sbceq1d 3440 . . . . . . . . . . . . 13 (𝑦 = (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) → ([(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑[((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“𝑧”⟩) / 𝑥]𝜑))
6350, 62imbi12d 334 . . . . . . . . . . . 12 (𝑦 = (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) → (([𝑦 / 𝑥]𝜑[(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑) ↔ ([(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) / 𝑥]𝜑[((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“𝑧”⟩) / 𝑥]𝜑)))
64 s1eq 13380 . . . . . . . . . . . . . . 15 (𝑧 = ( lastS ‘𝑥) → ⟨“𝑧”⟩ = ⟨“( lastS ‘𝑥)”⟩)
6564oveq2d 6666 . . . . . . . . . . . . . 14 (𝑧 = ( lastS ‘𝑥) → ((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“𝑧”⟩) = ((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩))
6665sbceq1d 3440 . . . . . . . . . . . . 13 (𝑧 = ( lastS ‘𝑥) → ([((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“𝑧”⟩) / 𝑥]𝜑[((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩) / 𝑥]𝜑))
6766imbi2d 330 . . . . . . . . . . . 12 (𝑧 = ( lastS ‘𝑥) → (([(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) / 𝑥]𝜑[((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“𝑧”⟩) / 𝑥]𝜑) ↔ ([(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) / 𝑥]𝜑[((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩) / 𝑥]𝜑)))
68 wrdind.6 . . . . . . . . . . . . 13 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (𝜒𝜃))
69 ovex 6678 . . . . . . . . . . . . . 14 (𝑦 ++ ⟨“𝑧”⟩) ∈ V
70 wrdind.3 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝜑𝜃))
7169, 70sbcie 3470 . . . . . . . . . . . . 13 ([(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑𝜃)
7268, 49, 713imtr4g 285 . . . . . . . . . . . 12 ((𝑦 ∈ Word 𝐵𝑧𝐵) → ([𝑦 / 𝑥]𝜑[(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑))
7363, 67, 72vtocl2ga 3274 . . . . . . . . . . 11 (((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ∈ Word 𝐵 ∧ ( lastS ‘𝑥) ∈ 𝐵) → ([(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) / 𝑥]𝜑[((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩) / 𝑥]𝜑))
7426, 60, 73syl2anc 693 . . . . . . . . . 10 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → ([(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) / 𝑥]𝜑[((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩) / 𝑥]𝜑))
7554, 74mpd 15 . . . . . . . . 9 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → [((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩) / 𝑥]𝜑)
76 wrdfin 13323 . . . . . . . . . . . . . 14 (𝑥 ∈ Word 𝐵𝑥 ∈ Fin)
7776ad2antrl 764 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → 𝑥 ∈ Fin)
78 hashnncl 13157 . . . . . . . . . . . . 13 (𝑥 ∈ Fin → ((#‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅))
7977, 78syl 17 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → ((#‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅))
8033, 79mpbid 222 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → 𝑥 ≠ ∅)
81 swrdccatwrd 13468 . . . . . . . . . . . 12 ((𝑥 ∈ Word 𝐵𝑥 ≠ ∅) → ((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩) = 𝑥)
8281eqcomd 2628 . . . . . . . . . . 11 ((𝑥 ∈ Word 𝐵𝑥 ≠ ∅) → 𝑥 = ((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩))
8328, 80, 82syl2anc 693 . . . . . . . . . 10 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → 𝑥 = ((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩))
84 sbceq1a 3446 . . . . . . . . . 10 (𝑥 = ((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩) → (𝜑[((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩) / 𝑥]𝜑))
8583, 84syl 17 . . . . . . . . 9 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → (𝜑[((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩) / 𝑥]𝜑))
8675, 85mpbird 247 . . . . . . . 8 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → 𝜑)
8786expr 643 . . . . . . 7 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ 𝑥 ∈ Word 𝐵) → ((#‘𝑥) = (𝑚 + 1) → 𝜑))
8887ralrimiva 2966 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) → ∀𝑥 ∈ Word 𝐵((#‘𝑥) = (𝑚 + 1) → 𝜑))
8988ex 450 . . . . 5 (𝑚 ∈ ℕ0 → (∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒) → ∀𝑥 ∈ Word 𝐵((#‘𝑥) = (𝑚 + 1) → 𝜑)))
9024, 89syl5bi 232 . . . 4 (𝑚 ∈ ℕ0 → (∀𝑥 ∈ Word 𝐵((#‘𝑥) = 𝑚𝜑) → ∀𝑥 ∈ Word 𝐵((#‘𝑥) = (𝑚 + 1) → 𝜑)))
914, 7, 10, 13, 19, 90nn0ind 11472 . . 3 ((#‘𝐴) ∈ ℕ0 → ∀𝑥 ∈ Word 𝐵((#‘𝑥) = (#‘𝐴) → 𝜑))
921, 91syl 17 . 2 (𝐴 ∈ Word 𝐵 → ∀𝑥 ∈ Word 𝐵((#‘𝑥) = (#‘𝐴) → 𝜑))
93 eqidd 2623 . 2 (𝐴 ∈ Word 𝐵 → (#‘𝐴) = (#‘𝐴))
94 fveq2 6191 . . . . 5 (𝑥 = 𝐴 → (#‘𝑥) = (#‘𝐴))
9594eqeq1d 2624 . . . 4 (𝑥 = 𝐴 → ((#‘𝑥) = (#‘𝐴) ↔ (#‘𝐴) = (#‘𝐴)))
96 wrdind.4 . . . 4 (𝑥 = 𝐴 → (𝜑𝜏))
9795, 96imbi12d 334 . . 3 (𝑥 = 𝐴 → (((#‘𝑥) = (#‘𝐴) → 𝜑) ↔ ((#‘𝐴) = (#‘𝐴) → 𝜏)))
9897rspcv 3305 . 2 (𝐴 ∈ Word 𝐵 → (∀𝑥 ∈ Word 𝐵((#‘𝑥) = (#‘𝐴) → 𝜑) → ((#‘𝐴) = (#‘𝐴) → 𝜏)))
9992, 93, 98mp2d 49 1 (𝐴 ∈ Word 𝐵𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  [wsbc 3435  c0 3915  cop 4183   class class class wbr 4653  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  0cc0 9936  1c1 9937   + caddc 9939  cle 10075  cmin 10266  cn 11020  0cn0 11292  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291   lastS clsw 13292   ++ cconcat 13293  ⟨“cs1 13294   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303
This theorem is referenced by:  frmdgsum  17399  gsumwrev  17796  gsmsymgrfix  17848  efginvrel2  18140  signstfvneq0  30649  signstfvc  30651  mrsubvrs  31419
  Copyright terms: Public domain W3C validator