| Step | Hyp | Ref
| Expression |
| 1 | | 0cn 10032 |
. . . . . . . 8
⊢ 0 ∈
ℂ |
| 2 | | fsumrelem.3 |
. . . . . . . . 9
⊢ 𝐹:ℂ⟶ℂ |
| 3 | 2 | ffvelrni 6358 |
. . . . . . . 8
⊢ (0 ∈
ℂ → (𝐹‘0)
∈ ℂ) |
| 4 | 1, 3 | ax-mp 5 |
. . . . . . 7
⊢ (𝐹‘0) ∈
ℂ |
| 5 | 4 | addid1i 10223 |
. . . . . 6
⊢ ((𝐹‘0) + 0) = (𝐹‘0) |
| 6 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (𝑥 + 𝑦) = (0 + 𝑦)) |
| 7 | 6 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(0 + 𝑦))) |
| 8 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (𝐹‘𝑥) = (𝐹‘0)) |
| 9 | 8 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝑥 = 0 → ((𝐹‘𝑥) + (𝐹‘𝑦)) = ((𝐹‘0) + (𝐹‘𝑦))) |
| 10 | 7, 9 | eqeq12d 2637 |
. . . . . . . 8
⊢ (𝑥 = 0 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦)) ↔ (𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹‘𝑦)))) |
| 11 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑦 = 0 → (0 + 𝑦) = (0 + 0)) |
| 12 | | 00id 10211 |
. . . . . . . . . . 11
⊢ (0 + 0) =
0 |
| 13 | 11, 12 | syl6eq 2672 |
. . . . . . . . . 10
⊢ (𝑦 = 0 → (0 + 𝑦) = 0) |
| 14 | 13 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑦 = 0 → (𝐹‘(0 + 𝑦)) = (𝐹‘0)) |
| 15 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑦 = 0 → (𝐹‘𝑦) = (𝐹‘0)) |
| 16 | 15 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑦 = 0 → ((𝐹‘0) + (𝐹‘𝑦)) = ((𝐹‘0) + (𝐹‘0))) |
| 17 | 14, 16 | eqeq12d 2637 |
. . . . . . . 8
⊢ (𝑦 = 0 → ((𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹‘𝑦)) ↔ (𝐹‘0) = ((𝐹‘0) + (𝐹‘0)))) |
| 18 | | fsumrelem.4 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) |
| 19 | 10, 17, 18 | vtocl2ga 3274 |
. . . . . . 7
⊢ ((0
∈ ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) = ((𝐹‘0) + (𝐹‘0))) |
| 20 | 1, 1, 19 | mp2an 708 |
. . . . . 6
⊢ (𝐹‘0) = ((𝐹‘0) + (𝐹‘0)) |
| 21 | 5, 20 | eqtr2i 2645 |
. . . . 5
⊢ ((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0) |
| 22 | 4, 4, 1 | addcani 10229 |
. . . . 5
⊢ (((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0) ↔ (𝐹‘0) = 0) |
| 23 | 21, 22 | mpbi 220 |
. . . 4
⊢ (𝐹‘0) = 0 |
| 24 | | sumeq1 14419 |
. . . . . 6
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵) |
| 25 | | sum0 14452 |
. . . . . 6
⊢
Σ𝑘 ∈
∅ 𝐵 =
0 |
| 26 | 24, 25 | syl6eq 2672 |
. . . . 5
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = 0) |
| 27 | 26 | fveq2d 6195 |
. . . 4
⊢ (𝐴 = ∅ → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = (𝐹‘0)) |
| 28 | | sumeq1 14419 |
. . . . 5
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 (𝐹‘𝐵) = Σ𝑘 ∈ ∅ (𝐹‘𝐵)) |
| 29 | | sum0 14452 |
. . . . 5
⊢
Σ𝑘 ∈
∅ (𝐹‘𝐵) = 0 |
| 30 | 28, 29 | syl6eq 2672 |
. . . 4
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 (𝐹‘𝐵) = 0) |
| 31 | 23, 27, 30 | 3eqtr4a 2682 |
. . 3
⊢ (𝐴 = ∅ → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵)) |
| 32 | 31 | a1i 11 |
. 2
⊢ (𝜑 → (𝐴 = ∅ → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵))) |
| 33 | | addcl 10018 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
| 34 | 33 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ) |
| 35 | | fsumre.2 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 36 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) |
| 37 | 35, 36 | fmptd 6385 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
| 38 | 37 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
| 39 | | simprr 796 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴) |
| 40 | | f1of 6137 |
. . . . . . . . . . 11
⊢ (𝑓:(1...(#‘𝐴))–1-1-onto→𝐴 → 𝑓:(1...(#‘𝐴))⟶𝐴) |
| 41 | 39, 40 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(#‘𝐴))⟶𝐴) |
| 42 | | fco 6058 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(#‘𝐴))⟶𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(#‘𝐴))⟶ℂ) |
| 43 | 38, 41, 42 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(#‘𝐴))⟶ℂ) |
| 44 | 43 | ffvelrnda 6359 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥) ∈ ℂ) |
| 45 | | simprl 794 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (#‘𝐴) ∈
ℕ) |
| 46 | | nnuz 11723 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
| 47 | 45, 46 | syl6eleq 2711 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (#‘𝐴) ∈
(ℤ≥‘1)) |
| 48 | 18 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) |
| 49 | 41 | ffvelrnda 6359 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → (𝑓‘𝑥) ∈ 𝐴) |
| 50 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) |
| 51 | 36 | fvmpt2 6291 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝐴 ∧ 𝐵 ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = 𝐵) |
| 52 | 50, 35, 51 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = 𝐵) |
| 53 | 52 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = (𝐹‘𝐵)) |
| 54 | | fvex 6201 |
. . . . . . . . . . . . . 14
⊢ (𝐹‘𝐵) ∈ V |
| 55 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) |
| 56 | 55 | fvmpt2 6291 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ V) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘) = (𝐹‘𝐵)) |
| 57 | 50, 54, 56 | sylancl 694 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘) = (𝐹‘𝐵)) |
| 58 | 53, 57 | eqtr4d 2659 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘)) |
| 59 | 58 | ralrimiva 2966 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘)) |
| 60 | 59 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → ∀𝑘 ∈ 𝐴 (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘)) |
| 61 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘𝐹 |
| 62 | | nffvmpt1 6199 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥)) |
| 63 | 61, 62 | nffv 6198 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) |
| 64 | | nffvmpt1 6199 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥)) |
| 65 | 63, 64 | nfeq 2776 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥)) |
| 66 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑓‘𝑥) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) |
| 67 | 66 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘𝑥) → (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥)))) |
| 68 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘𝑥) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥))) |
| 69 | 67, 68 | eqeq12d 2637 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑓‘𝑥) → ((𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘) ↔ (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥)))) |
| 70 | 65, 69 | rspc 3303 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑥) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘) → (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥)))) |
| 71 | 49, 60, 70 | sylc 65 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥))) |
| 72 | | fvco3 6275 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(#‘𝐴))⟶𝐴 ∧ 𝑥 ∈ (1...(#‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) |
| 73 | 41, 72 | sylan 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) |
| 74 | 73 | fveq2d 6195 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → (𝐹‘(((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥)) = (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥)))) |
| 75 | | fvco3 6275 |
. . . . . . . . . 10
⊢ ((𝑓:(1...(#‘𝐴))⟶𝐴 ∧ 𝑥 ∈ (1...(#‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∘ 𝑓)‘𝑥) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥))) |
| 76 | 41, 75 | sylan 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∘ 𝑓)‘𝑥) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥))) |
| 77 | 71, 74, 76 | 3eqtr4d 2666 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → (𝐹‘(((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥)) = (((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∘ 𝑓)‘𝑥)) |
| 78 | 34, 44, 47, 48, 77 | seqhomo 12848 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝐹‘(seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(#‘𝐴))) = (seq1( + , ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∘ 𝑓))‘(#‘𝐴))) |
| 79 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑚 = (𝑓‘𝑥) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) |
| 80 | 38 | ffvelrnda 6359 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) ∈ ℂ) |
| 81 | 79, 45, 39, 80, 73 | fsum 14451 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = (seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(#‘𝐴))) |
| 82 | 81 | fveq2d 6195 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝐹‘Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚)) = (𝐹‘(seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(#‘𝐴)))) |
| 83 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑚 = (𝑓‘𝑥) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑚) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥))) |
| 84 | 2 | ffvelrni 6358 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℂ → (𝐹‘𝐵) ∈ ℂ) |
| 85 | 35, 84 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝐵) ∈ ℂ) |
| 86 | 85, 55 | fmptd 6385 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)):𝐴⟶ℂ) |
| 87 | 86 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)):𝐴⟶ℂ) |
| 88 | 87 | ffvelrnda 6359 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑚) ∈ ℂ) |
| 89 | 83, 45, 39, 88, 76 | fsum 14451 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑚) = (seq1( + , ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∘ 𝑓))‘(#‘𝐴))) |
| 90 | 78, 82, 89 | 3eqtr4d 2666 |
. . . . . 6
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝐹‘Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚)) = Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑚)) |
| 91 | | sumfc 14440 |
. . . . . . 7
⊢
Σ𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = Σ𝑘 ∈ 𝐴 𝐵 |
| 92 | 91 | fveq2i 6194 |
. . . . . 6
⊢ (𝐹‘Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚)) = (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) |
| 93 | | sumfc 14440 |
. . . . . 6
⊢
Σ𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑚) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵) |
| 94 | 90, 92, 93 | 3eqtr3g 2679 |
. . . . 5
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵)) |
| 95 | 94 | expr 643 |
. . . 4
⊢ ((𝜑 ∧ (#‘𝐴) ∈ ℕ) → (𝑓:(1...(#‘𝐴))–1-1-onto→𝐴 → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵))) |
| 96 | 95 | exlimdv 1861 |
. . 3
⊢ ((𝜑 ∧ (#‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴 → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵))) |
| 97 | 96 | expimpd 629 |
. 2
⊢ (𝜑 → (((#‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴) → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵))) |
| 98 | | fsumre.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 99 | | fz1f1o 14441 |
. . 3
⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴))) |
| 100 | 98, 99 | syl 17 |
. 2
⊢ (𝜑 → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴))) |
| 101 | 32, 97, 100 | mpjaod 396 |
1
⊢ (𝜑 → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵)) |