MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumz Structured version   Visualization version   GIF version

Theorem sumz 14453
Description: Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
Assertion
Ref Expression
sumz ((𝐴 ⊆ (ℤ𝑀) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀

Proof of Theorem sumz
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
2 simpr 477 . . . . 5 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
3 simpl 473 . . . . 5 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → 𝐴 ⊆ (ℤ𝑀))
4 c0ex 10034 . . . . . . . 8 0 ∈ V
54fvconst2 6469 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {0})‘𝑘) = 0)
6 ifid 4125 . . . . . . 7 if(𝑘𝐴, 0, 0) = 0
75, 6syl6eqr 2674 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {0})‘𝑘) = if(𝑘𝐴, 0, 0))
87adantl 482 . . . . 5 (((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {0})‘𝑘) = if(𝑘𝐴, 0, 0))
9 0cnd 10033 . . . . 5 (((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) ∧ 𝑘𝐴) → 0 ∈ ℂ)
101, 2, 3, 8, 9zsum 14449 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → Σ𝑘𝐴 0 = ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}))))
11 fclim 14284 . . . . . 6 ⇝ :dom ⇝ ⟶ℂ
12 ffun 6048 . . . . . 6 ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ )
1311, 12ax-mp 5 . . . . 5 Fun ⇝
14 serclim0 14308 . . . . . 6 (𝑀 ∈ ℤ → seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0)
1514adantl 482 . . . . 5 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0)
16 funbrfv 6234 . . . . 5 (Fun ⇝ → (seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0 → ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}))) = 0))
1713, 15, 16mpsyl 68 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}))) = 0)
1810, 17eqtrd 2656 . . 3 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → Σ𝑘𝐴 0 = 0)
19 uzf 11690 . . . . . . . . 9 :ℤ⟶𝒫 ℤ
2019fdmi 6052 . . . . . . . 8 dom ℤ = ℤ
2120eleq2i 2693 . . . . . . 7 (𝑀 ∈ dom ℤ𝑀 ∈ ℤ)
22 ndmfv 6218 . . . . . . 7 𝑀 ∈ dom ℤ → (ℤ𝑀) = ∅)
2321, 22sylnbir 321 . . . . . 6 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
2423sseq2d 3633 . . . . 5 𝑀 ∈ ℤ → (𝐴 ⊆ (ℤ𝑀) ↔ 𝐴 ⊆ ∅))
2524biimpac 503 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 ⊆ ∅)
26 ss0 3974 . . . 4 (𝐴 ⊆ ∅ → 𝐴 = ∅)
27 sumeq1 14419 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 0 = Σ𝑘 ∈ ∅ 0)
28 sum0 14452 . . . . 5 Σ𝑘 ∈ ∅ 0 = 0
2927, 28syl6eq 2672 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 0 = 0)
3025, 26, 293syl 18 . . 3 ((𝐴 ⊆ (ℤ𝑀) ∧ ¬ 𝑀 ∈ ℤ) → Σ𝑘𝐴 0 = 0)
3118, 30pm2.61dan 832 . 2 (𝐴 ⊆ (ℤ𝑀) → Σ𝑘𝐴 0 = 0)
32 fz1f1o 14441 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)))
33 eqidd 2623 . . . . . . . . 9 (𝑘 = (𝑓𝑛) → 0 = 0)
34 simpl 473 . . . . . . . . 9 (((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → (#‘𝐴) ∈ ℕ)
35 simpr 477 . . . . . . . . 9 (((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)
36 0cnd 10033 . . . . . . . . 9 ((((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ 𝑘𝐴) → 0 ∈ ℂ)
37 elfznn 12370 . . . . . . . . . . 11 (𝑛 ∈ (1...(#‘𝐴)) → 𝑛 ∈ ℕ)
384fvconst2 6469 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((ℕ × {0})‘𝑛) = 0)
3937, 38syl 17 . . . . . . . . . 10 (𝑛 ∈ (1...(#‘𝐴)) → ((ℕ × {0})‘𝑛) = 0)
4039adantl 482 . . . . . . . . 9 ((((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ 𝑛 ∈ (1...(#‘𝐴))) → ((ℕ × {0})‘𝑛) = 0)
4133, 34, 35, 36, 40fsum 14451 . . . . . . . 8 (((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = (seq1( + , (ℕ × {0}))‘(#‘𝐴)))
42 nnuz 11723 . . . . . . . . . 10 ℕ = (ℤ‘1)
4342ser0 12853 . . . . . . . . 9 ((#‘𝐴) ∈ ℕ → (seq1( + , (ℕ × {0}))‘(#‘𝐴)) = 0)
4443adantr 481 . . . . . . . 8 (((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → (seq1( + , (ℕ × {0}))‘(#‘𝐴)) = 0)
4541, 44eqtrd 2656 . . . . . . 7 (((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = 0)
4645ex 450 . . . . . 6 ((#‘𝐴) ∈ ℕ → (𝑓:(1...(#‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 0 = 0))
4746exlimdv 1861 . . . . 5 ((#‘𝐴) ∈ ℕ → (∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 0 = 0))
4847imp 445 . . . 4 (((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = 0)
4929, 48jaoi 394 . . 3 ((𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 0 = 0)
5032, 49syl 17 . 2 (𝐴 ∈ Fin → Σ𝑘𝐴 0 = 0)
5131, 50jaoi 394 1 ((𝐴 ⊆ (ℤ𝑀) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1483  wex 1704  wcel 1990  wss 3574  c0 3915  ifcif 4086  𝒫 cpw 4158  {csn 4177   class class class wbr 4653   × cxp 5112  dom cdm 5114  Fun wfun 5882  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  0cc0 9936  1c1 9937   + caddc 9939  cn 11020  cz 11377  cuz 11687  ...cfz 12326  seqcseq 12801  #chash 13117  cli 14215  Σcsu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by:  fsum00  14530  fsumdvds  15030  pwp1fsum  15114  pcfac  15603  ovoliunnul  23275  vitalilem5  23381  itg1addlem5  23467  itg10a  23477  itg0  23546  itgz  23547  plymullem1  23970  coemullem  24006  logtayl  24406  ftalem5  24803  chp1  24893  logexprlim  24950  bposlem2  25010  rpvmasumlem  25176  axcgrid  25796  axlowdimlem16  25837  indsumin  30084  plymulx0  30624  signsplypnf  30627  fsum2dsub  30685  knoppndvlem6  32508  volsupnfl  33454  binomcxplemnn0  38548  binomcxplemnotnn0  38555  sumnnodd  39862  stoweidlem37  40254  fourierdlem103  40426  fourierdlem104  40427  etransclem24  40475  etransclem32  40483  etransclem35  40486  sge0z  40592  aacllem  42547
  Copyright terms: Public domain W3C validator