MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw3fi1lem1 Structured version   Visualization version   GIF version

Theorem pmatcollpw3fi1lem1 20591
Description: Lemma 1 for pmatcollpw3fi1 20593. (Contributed by AV, 6-Nov-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw.p 𝑃 = (Poly1𝑅)
pmatcollpw.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpw.b 𝐵 = (Base‘𝐶)
pmatcollpw.m = ( ·𝑠𝐶)
pmatcollpw.e = (.g‘(mulGrp‘𝑃))
pmatcollpw.x 𝑋 = (var1𝑅)
pmatcollpw.t 𝑇 = (𝑁 matToPolyMat 𝑅)
pmatcollpw3.a 𝐴 = (𝑁 Mat 𝑅)
pmatcollpw3.d 𝐷 = (Base‘𝐴)
pmatcollpw3fi1lem1.0 0 = (0g𝐴)
pmatcollpw3fi1lem1.h 𝐻 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝐺‘0), 0 ))
Assertion
Ref Expression
pmatcollpw3fi1lem1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑛,𝑋   ,𝑛   𝐶,𝑛   𝐵,𝑙   𝑀,𝑙   𝑁,𝑙   𝑅,𝑙   𝐷,𝑙,𝑛   𝐴,𝑙   𝐺,𝑙,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐶(𝑙)   𝑃(𝑙)   𝑇(𝑛,𝑙)   (𝑙)   𝐻(𝑛,𝑙)   (𝑛,𝑙)   𝑋(𝑙)   0 (𝑛,𝑙)

Proof of Theorem pmatcollpw3fi1lem1
StepHypRef Expression
1 simpr 477 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))))
2 pmatcollpw.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
3 pmatcollpw.c . . . . . . . . . . 11 𝐶 = (𝑁 Mat 𝑃)
42, 3pmatring 20498 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
5 ringmnd 18556 . . . . . . . . . 10 (𝐶 ∈ Ring → 𝐶 ∈ Mnd)
64, 5syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Mnd)
76adantr 481 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) → 𝐶 ∈ Mnd)
8 pmatcollpw.b . . . . . . . . 9 𝐵 = (Base‘𝐶)
9 ringcmn 18581 . . . . . . . . . . 11 (𝐶 ∈ Ring → 𝐶 ∈ CMnd)
104, 9syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ CMnd)
1110adantr 481 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) → 𝐶 ∈ CMnd)
12 snfi 8038 . . . . . . . . . 10 {0} ∈ Fin
1312a1i 11 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) → {0} ∈ Fin)
14 simplll 798 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ {0}) → 𝑁 ∈ Fin)
15 simpllr 799 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ {0}) → 𝑅 ∈ Ring)
16 elmapi 7879 . . . . . . . . . . . . 13 (𝐺 ∈ (𝐷𝑚 {0}) → 𝐺:{0}⟶𝐷)
1716adantl 482 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) → 𝐺:{0}⟶𝐷)
1817ffvelrnda 6359 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ {0}) → (𝐺𝑛) ∈ 𝐷)
19 elsni 4194 . . . . . . . . . . . . 13 (𝑛 ∈ {0} → 𝑛 = 0)
20 0nn0 11307 . . . . . . . . . . . . 13 0 ∈ ℕ0
2119, 20syl6eqel 2709 . . . . . . . . . . . 12 (𝑛 ∈ {0} → 𝑛 ∈ ℕ0)
2221adantl 482 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ {0}) → 𝑛 ∈ ℕ0)
23 pmatcollpw3.a . . . . . . . . . . . 12 𝐴 = (𝑁 Mat 𝑅)
24 pmatcollpw3.d . . . . . . . . . . . 12 𝐷 = (Base‘𝐴)
25 pmatcollpw.t . . . . . . . . . . . 12 𝑇 = (𝑁 matToPolyMat 𝑅)
26 pmatcollpw.m . . . . . . . . . . . 12 = ( ·𝑠𝐶)
27 pmatcollpw.e . . . . . . . . . . . 12 = (.g‘(mulGrp‘𝑃))
28 pmatcollpw.x . . . . . . . . . . . 12 𝑋 = (var1𝑅)
2923, 24, 25, 2, 3, 8, 26, 27, 28mat2pmatscmxcl 20545 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝐺𝑛) ∈ 𝐷𝑛 ∈ ℕ0)) → ((𝑛 𝑋) (𝑇‘(𝐺𝑛))) ∈ 𝐵)
3014, 15, 18, 22, 29syl22anc 1327 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ {0}) → ((𝑛 𝑋) (𝑇‘(𝐺𝑛))) ∈ 𝐵)
3130ralrimiva 2966 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) → ∀𝑛 ∈ {0} ((𝑛 𝑋) (𝑇‘(𝐺𝑛))) ∈ 𝐵)
328, 11, 13, 31gsummptcl 18366 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) → (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))) ∈ 𝐵)
33 eqid 2622 . . . . . . . . 9 (+g𝐶) = (+g𝐶)
34 eqid 2622 . . . . . . . . 9 (0g𝐶) = (0g𝐶)
358, 33, 34mndrid 17312 . . . . . . . 8 ((𝐶 ∈ Mnd ∧ (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))) ∈ 𝐵) → ((𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))(+g𝐶)(0g𝐶)) = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))))
367, 32, 35syl2anc 693 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) → ((𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))(+g𝐶)(0g𝐶)) = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))))
37 0z 11388 . . . . . . . . . . . . 13 0 ∈ ℤ
38 fzsn 12383 . . . . . . . . . . . . 13 (0 ∈ ℤ → (0...0) = {0})
3937, 38ax-mp 5 . . . . . . . . . . . 12 (0...0) = {0}
4039eqcomi 2631 . . . . . . . . . . 11 {0} = (0...0)
4140a1i 11 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) → {0} = (0...0))
42 pmatcollpw3fi1lem1.h . . . . . . . . . . . . . . 15 𝐻 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝐺‘0), 0 ))
4342a1i 11 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ {0}) → 𝐻 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝐺‘0), 0 )))
44 simpr 477 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → 𝑙 = 𝑛)
4519ad2antlr 763 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → 𝑛 = 0)
4644, 45eqtrd 2656 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → 𝑙 = 0)
4746iftrued 4094 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → if(𝑙 = 0, (𝐺‘0), 0 ) = (𝐺‘0))
48 fveq2 6191 . . . . . . . . . . . . . . . . . 18 (𝑛 = 0 → (𝐺𝑛) = (𝐺‘0))
4948eqcomd 2628 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → (𝐺‘0) = (𝐺𝑛))
5019, 49syl 17 . . . . . . . . . . . . . . . 16 (𝑛 ∈ {0} → (𝐺‘0) = (𝐺𝑛))
5150ad2antlr 763 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → (𝐺‘0) = (𝐺𝑛))
5247, 51eqtrd 2656 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ {0}) ∧ 𝑙 = 𝑛) → if(𝑙 = 0, (𝐺‘0), 0 ) = (𝐺𝑛))
53 1nn0 11308 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℕ0
5453a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 0 → 1 ∈ ℕ0)
55 nn0uz 11722 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
5654, 55syl6eleq 2711 . . . . . . . . . . . . . . . . . 18 (𝑛 = 0 → 1 ∈ (ℤ‘0))
57 eluzfz1 12348 . . . . . . . . . . . . . . . . . 18 (1 ∈ (ℤ‘0) → 0 ∈ (0...1))
5856, 57syl 17 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → 0 ∈ (0...1))
59 eleq1 2689 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → (𝑛 ∈ (0...1) ↔ 0 ∈ (0...1)))
6058, 59mpbird 247 . . . . . . . . . . . . . . . 16 (𝑛 = 0 → 𝑛 ∈ (0...1))
6119, 60syl 17 . . . . . . . . . . . . . . 15 (𝑛 ∈ {0} → 𝑛 ∈ (0...1))
6261adantl 482 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ {0}) → 𝑛 ∈ (0...1))
63 ffvelrn 6357 . . . . . . . . . . . . . . . . . 18 ((𝐺:{0}⟶𝐷𝑛 ∈ {0}) → (𝐺𝑛) ∈ 𝐷)
6463ex 450 . . . . . . . . . . . . . . . . 17 (𝐺:{0}⟶𝐷 → (𝑛 ∈ {0} → (𝐺𝑛) ∈ 𝐷))
6516, 64syl 17 . . . . . . . . . . . . . . . 16 (𝐺 ∈ (𝐷𝑚 {0}) → (𝑛 ∈ {0} → (𝐺𝑛) ∈ 𝐷))
6665adantl 482 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) → (𝑛 ∈ {0} → (𝐺𝑛) ∈ 𝐷))
6766imp 445 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ {0}) → (𝐺𝑛) ∈ 𝐷)
6843, 52, 62, 67fvmptd 6288 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ {0}) → (𝐻𝑛) = (𝐺𝑛))
6968eqcomd 2628 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ {0}) → (𝐺𝑛) = (𝐻𝑛))
7069fveq2d 6195 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ {0}) → (𝑇‘(𝐺𝑛)) = (𝑇‘(𝐻𝑛)))
7170oveq2d 6666 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ {0}) → ((𝑛 𝑋) (𝑇‘(𝐺𝑛))) = ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))
7241, 71mpteq12dva 4732 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) → (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))) = (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))
7372oveq2d 6666 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) → (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))) = (𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))))
74 ovexd 6680 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) → (0 + 1) ∈ V)
758, 34mndidcl 17308 . . . . . . . . . . . 12 (𝐶 ∈ Mnd → (0g𝐶) ∈ 𝐵)
766, 75syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐶) ∈ 𝐵)
7776adantr 481 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) → (0g𝐶) ∈ 𝐵)
7842a1i 11 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 = (0 + 1)) → 𝐻 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝐺‘0), 0 )))
79 0p1e1 11132 . . . . . . . . . . . . . . . . . . . . 21 (0 + 1) = 1
8079eqeq2i 2634 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = (0 + 1) ↔ 𝑛 = 1)
81 ax-1ne0 10005 . . . . . . . . . . . . . . . . . . . . . 22 1 ≠ 0
8281neii 2796 . . . . . . . . . . . . . . . . . . . . 21 ¬ 1 = 0
83 eqeq1 2626 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 1 → (𝑛 = 0 ↔ 1 = 0))
8482, 83mtbiri 317 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1 → ¬ 𝑛 = 0)
8580, 84sylbi 207 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (0 + 1) → ¬ 𝑛 = 0)
8685ad2antlr 763 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 = (0 + 1)) ∧ 𝑙 = 𝑛) → ¬ 𝑛 = 0)
87 eqeq1 2626 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑛 → (𝑙 = 0 ↔ 𝑛 = 0))
8887notbid 308 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑛 → (¬ 𝑙 = 0 ↔ ¬ 𝑛 = 0))
8988adantl 482 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 = (0 + 1)) ∧ 𝑙 = 𝑛) → (¬ 𝑙 = 0 ↔ ¬ 𝑛 = 0))
9086, 89mpbird 247 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 = (0 + 1)) ∧ 𝑙 = 𝑛) → ¬ 𝑙 = 0)
9190iffalsed 4097 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 = (0 + 1)) ∧ 𝑙 = 𝑛) → if(𝑙 = 0, (𝐺‘0), 0 ) = 0 )
92 pmatcollpw3fi1lem1.0 . . . . . . . . . . . . . . . 16 0 = (0g𝐴)
9391, 92syl6eq 2672 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 = (0 + 1)) ∧ 𝑙 = 𝑛) → if(𝑙 = 0, (𝐺‘0), 0 ) = (0g𝐴))
9453a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1 → 1 ∈ ℕ0)
9594, 55syl6eleq 2711 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1 → 1 ∈ (ℤ‘0))
96 eluzfz2 12349 . . . . . . . . . . . . . . . . . . 19 (1 ∈ (ℤ‘0) → 1 ∈ (0...1))
9795, 96syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → 1 ∈ (0...1))
98 eleq1 2689 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → (𝑛 ∈ (0...1) ↔ 1 ∈ (0...1)))
9997, 98mpbird 247 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → 𝑛 ∈ (0...1))
10080, 99sylbi 207 . . . . . . . . . . . . . . . 16 (𝑛 = (0 + 1) → 𝑛 ∈ (0...1))
101100adantl 482 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 = (0 + 1)) → 𝑛 ∈ (0...1))
102 fvexd 6203 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 = (0 + 1)) → (0g𝐴) ∈ V)
10378, 93, 101, 102fvmptd 6288 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 = (0 + 1)) → (𝐻𝑛) = (0g𝐴))
104103fveq2d 6195 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 = (0 + 1)) → (𝑇‘(𝐻𝑛)) = (𝑇‘(0g𝐴)))
10523fveq2i 6194 . . . . . . . . . . . . . . . 16 (0g𝐴) = (0g‘(𝑁 Mat 𝑅))
1063fveq2i 6194 . . . . . . . . . . . . . . . 16 (0g𝐶) = (0g‘(𝑁 Mat 𝑃))
10725, 2, 105, 1060mat2pmat 20541 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝑇‘(0g𝐴)) = (0g𝐶))
108107ancoms 469 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(0g𝐴)) = (0g𝐶))
109108ad2antrr 762 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 = (0 + 1)) → (𝑇‘(0g𝐴)) = (0g𝐶))
110104, 109eqtrd 2656 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 = (0 + 1)) → (𝑇‘(𝐻𝑛)) = (0g𝐶))
111110oveq2d 6666 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 = (0 + 1)) → ((𝑛 𝑋) (𝑇‘(𝐻𝑛))) = ((𝑛 𝑋) (0g𝐶)))
1122, 3pmatlmod 20499 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ LMod)
113112ad2antrr 762 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 = (0 + 1)) → 𝐶 ∈ LMod)
114 simpllr 799 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 = (0 + 1)) → 𝑅 ∈ Ring)
115 eleq1 2689 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → (𝑛 ∈ ℕ0 ↔ 1 ∈ ℕ0))
11694, 115mpbird 247 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → 𝑛 ∈ ℕ0)
11780, 116sylbi 207 . . . . . . . . . . . . . . 15 (𝑛 = (0 + 1) → 𝑛 ∈ ℕ0)
118117adantl 482 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 = (0 + 1)) → 𝑛 ∈ ℕ0)
119 eqid 2622 . . . . . . . . . . . . . . 15 (mulGrp‘𝑃) = (mulGrp‘𝑃)
120 eqid 2622 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘𝑃)
1212, 28, 119, 27, 120ply1moncl 19641 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0) → (𝑛 𝑋) ∈ (Base‘𝑃))
122114, 118, 121syl2anc 693 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 = (0 + 1)) → (𝑛 𝑋) ∈ (Base‘𝑃))
1232ply1ring 19618 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
1243matsca2 20226 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝑃 = (Scalar‘𝐶))
125123, 124sylan2 491 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑃 = (Scalar‘𝐶))
126125eqcomd 2628 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘𝐶) = 𝑃)
127126fveq2d 6195 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(Scalar‘𝐶)) = (Base‘𝑃))
128127eleq2d 2687 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑛 𝑋) ∈ (Base‘(Scalar‘𝐶)) ↔ (𝑛 𝑋) ∈ (Base‘𝑃)))
129128ad2antrr 762 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 = (0 + 1)) → ((𝑛 𝑋) ∈ (Base‘(Scalar‘𝐶)) ↔ (𝑛 𝑋) ∈ (Base‘𝑃)))
130122, 129mpbird 247 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 = (0 + 1)) → (𝑛 𝑋) ∈ (Base‘(Scalar‘𝐶)))
131 eqid 2622 . . . . . . . . . . . . 13 (Scalar‘𝐶) = (Scalar‘𝐶)
132 eqid 2622 . . . . . . . . . . . . 13 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
133131, 26, 132, 34lmodvs0 18897 . . . . . . . . . . . 12 ((𝐶 ∈ LMod ∧ (𝑛 𝑋) ∈ (Base‘(Scalar‘𝐶))) → ((𝑛 𝑋) (0g𝐶)) = (0g𝐶))
134113, 130, 133syl2anc 693 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 = (0 + 1)) → ((𝑛 𝑋) (0g𝐶)) = (0g𝐶))
135111, 134eqtrd 2656 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 = (0 + 1)) → ((𝑛 𝑋) (𝑇‘(𝐻𝑛))) = (0g𝐶))
1368, 7, 74, 77, 135gsumsnd 18352 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) → (𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))) = (0g𝐶))
137136eqcomd 2628 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) → (0g𝐶) = (𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))))
13873, 137oveq12d 6668 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) → ((𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))(+g𝐶)(0g𝐶)) = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
13936, 138eqtr3d 2658 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) → (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))) = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
140139adantr 481 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛))))) = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
1411, 140eqtrd 2656 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
1421413impa 1259 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
14320a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) → 0 ∈ ℕ0)
144 simplll 798 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ (0...(0 + 1))) → 𝑁 ∈ Fin)
145 simpllr 799 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ (0...(0 + 1))) → 𝑅 ∈ Ring)
146 id 22 . . . . . . . . . . . . 13 (𝐺:{0}⟶𝐷𝐺:{0}⟶𝐷)
147 c0ex 10034 . . . . . . . . . . . . . . 15 0 ∈ V
148147snid 4208 . . . . . . . . . . . . . 14 0 ∈ {0}
149148a1i 11 . . . . . . . . . . . . 13 (𝐺:{0}⟶𝐷 → 0 ∈ {0})
150146, 149ffvelrnd 6360 . . . . . . . . . . . 12 (𝐺:{0}⟶𝐷 → (𝐺‘0) ∈ 𝐷)
15116, 150syl 17 . . . . . . . . . . 11 (𝐺 ∈ (𝐷𝑚 {0}) → (𝐺‘0) ∈ 𝐷)
152151ad2antlr 763 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑙 ∈ (0...1)) → (𝐺‘0) ∈ 𝐷)
15323matring 20249 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
15424, 92ring0cl 18569 . . . . . . . . . . . 12 (𝐴 ∈ Ring → 0𝐷)
155153, 154syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0𝐷)
156155ad2antrr 762 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑙 ∈ (0...1)) → 0𝐷)
157152, 156ifcld 4131 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑙 ∈ (0...1)) → if(𝑙 = 0, (𝐺‘0), 0 ) ∈ 𝐷)
158157, 42fmptd 6385 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) → 𝐻:(0...1)⟶𝐷)
15979oveq2i 6661 . . . . . . . . 9 (0...(0 + 1)) = (0...1)
160159feq2i 6037 . . . . . . . 8 (𝐻:(0...(0 + 1))⟶𝐷𝐻:(0...1)⟶𝐷)
161158, 160sylibr 224 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) → 𝐻:(0...(0 + 1))⟶𝐷)
162161ffvelrnda 6359 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ (0...(0 + 1))) → (𝐻𝑛) ∈ 𝐷)
163 elfznn0 12433 . . . . . . 7 (𝑛 ∈ (0...(0 + 1)) → 𝑛 ∈ ℕ0)
164163adantl 482 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ (0...(0 + 1))) → 𝑛 ∈ ℕ0)
16523, 24, 25, 2, 3, 8, 26, 27, 28mat2pmatscmxcl 20545 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝐻𝑛) ∈ 𝐷𝑛 ∈ ℕ0)) → ((𝑛 𝑋) (𝑇‘(𝐻𝑛))) ∈ 𝐵)
166144, 145, 162, 164, 165syl22anc 1327 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) ∧ 𝑛 ∈ (0...(0 + 1))) → ((𝑛 𝑋) (𝑇‘(𝐻𝑛))) ∈ 𝐵)
1678, 33, 11, 143, 166gsummptfzsplit 18332 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0})) → (𝐶 Σg (𝑛 ∈ (0...(0 + 1)) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))) = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
1681673adant3 1081 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → (𝐶 Σg (𝑛 ∈ (0...(0 + 1)) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))) = ((𝐶 Σg (𝑛 ∈ (0...0) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))(+g𝐶)(𝐶 Σg (𝑛 ∈ {(0 + 1)} ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))))
169142, 168eqtr4d 2659 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...(0 + 1)) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))))
170 mpteq1 4737 . . . 4 ((0...(0 + 1)) = (0...1) → (𝑛 ∈ (0...(0 + 1)) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))) = (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))
171159, 170ax-mp 5 . . 3 (𝑛 ∈ (0...(0 + 1)) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))) = (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))
172171oveq2i 6661 . 2 (𝐶 Σg (𝑛 ∈ (0...(0 + 1)) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))) = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛)))))
173169, 172syl6eq 2672 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐺 ∈ (𝐷𝑚 {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝐺𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝐻𝑛))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  ifcif 4086  {csn 4177  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955  0cc0 9936  1c1 9937   + caddc 9939  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  Basecbs 15857  +gcplusg 15941  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100   Σg cgsu 16101  Mndcmnd 17294  .gcmg 17540  CMndccmn 18193  mulGrpcmgp 18489  Ringcrg 18547  LModclmod 18863  var1cv1 19546  Poly1cpl1 19547   Mat cmat 20213   matToPolyMat cmat2pmat 20509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-vr1 19551  df-ply1 19552  df-dsmm 20076  df-frlm 20091  df-mamu 20190  df-mat 20214  df-mat2pmat 20512
This theorem is referenced by:  pmatcollpw3fi1lem2  20592
  Copyright terms: Public domain W3C validator