MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgbinom Structured version   Visualization version   GIF version

Theorem srgbinom 18545
Description: The binomial theorem for commuting elements of a semiring: (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴𝑘) · (𝐵↑(𝑁𝑘)) (generalization of binom 14562). (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
srgbinom.s 𝑆 = (Base‘𝑅)
srgbinom.m × = (.r𝑅)
srgbinom.t · = (.g𝑅)
srgbinom.a + = (+g𝑅)
srgbinom.g 𝐺 = (mulGrp‘𝑅)
srgbinom.e = (.g𝐺)
Assertion
Ref Expression
srgbinom (((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁   𝑅,𝑘   𝑆,𝑘   · ,𝑘   ,𝑘   × ,𝑘   + ,𝑘
Allowed substitution hint:   𝐺(𝑘)

Proof of Theorem srgbinom
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6657 . . . . . . 7 (𝑥 = 0 → (𝑥 (𝐴 + 𝐵)) = (0 (𝐴 + 𝐵)))
2 oveq2 6658 . . . . . . . . 9 (𝑥 = 0 → (0...𝑥) = (0...0))
3 oveq1 6657 . . . . . . . . . 10 (𝑥 = 0 → (𝑥C𝑘) = (0C𝑘))
4 oveq1 6657 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑥𝑘) = (0 − 𝑘))
54oveq1d 6665 . . . . . . . . . . 11 (𝑥 = 0 → ((𝑥𝑘) 𝐴) = ((0 − 𝑘) 𝐴))
65oveq1d 6665 . . . . . . . . . 10 (𝑥 = 0 → (((𝑥𝑘) 𝐴) × (𝑘 𝐵)) = (((0 − 𝑘) 𝐴) × (𝑘 𝐵)))
73, 6oveq12d 6668 . . . . . . . . 9 (𝑥 = 0 → ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))) = ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))
82, 7mpteq12dv 4733 . . . . . . . 8 (𝑥 = 0 → (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵)))))
98oveq2d 6666 . . . . . . 7 (𝑥 = 0 → (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))))
101, 9eqeq12d 2637 . . . . . 6 (𝑥 = 0 → ((𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) ↔ (0 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵)))))))
1110imbi2d 330 . . . . 5 (𝑥 = 0 → (((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))))) ↔ ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (0 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))))))
12 oveq1 6657 . . . . . . 7 (𝑥 = 𝑛 → (𝑥 (𝐴 + 𝐵)) = (𝑛 (𝐴 + 𝐵)))
13 oveq2 6658 . . . . . . . . 9 (𝑥 = 𝑛 → (0...𝑥) = (0...𝑛))
14 oveq1 6657 . . . . . . . . . 10 (𝑥 = 𝑛 → (𝑥C𝑘) = (𝑛C𝑘))
15 oveq1 6657 . . . . . . . . . . . 12 (𝑥 = 𝑛 → (𝑥𝑘) = (𝑛𝑘))
1615oveq1d 6665 . . . . . . . . . . 11 (𝑥 = 𝑛 → ((𝑥𝑘) 𝐴) = ((𝑛𝑘) 𝐴))
1716oveq1d 6665 . . . . . . . . . 10 (𝑥 = 𝑛 → (((𝑥𝑘) 𝐴) × (𝑘 𝐵)) = (((𝑛𝑘) 𝐴) × (𝑘 𝐵)))
1814, 17oveq12d 6668 . . . . . . . . 9 (𝑥 = 𝑛 → ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))) = ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵))))
1913, 18mpteq12dv 4733 . . . . . . . 8 (𝑥 = 𝑛 → (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵)))))
2019oveq2d 6666 . . . . . . 7 (𝑥 = 𝑛 → (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵))))))
2112, 20eqeq12d 2637 . . . . . 6 (𝑥 = 𝑛 → ((𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) ↔ (𝑛 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵)))))))
2221imbi2d 330 . . . . 5 (𝑥 = 𝑛 → (((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))))) ↔ ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑛 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵))))))))
23 oveq1 6657 . . . . . . 7 (𝑥 = (𝑛 + 1) → (𝑥 (𝐴 + 𝐵)) = ((𝑛 + 1) (𝐴 + 𝐵)))
24 oveq2 6658 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (0...𝑥) = (0...(𝑛 + 1)))
25 oveq1 6657 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → (𝑥C𝑘) = ((𝑛 + 1)C𝑘))
26 oveq1 6657 . . . . . . . . . . . 12 (𝑥 = (𝑛 + 1) → (𝑥𝑘) = ((𝑛 + 1) − 𝑘))
2726oveq1d 6665 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → ((𝑥𝑘) 𝐴) = (((𝑛 + 1) − 𝑘) 𝐴))
2827oveq1d 6665 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → (((𝑥𝑘) 𝐴) × (𝑘 𝐵)) = ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))
2925, 28oveq12d 6668 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
3024, 29mpteq12dv 4733 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...(𝑛 + 1)) ↦ (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
3130oveq2d 6666 . . . . . . 7 (𝑥 = (𝑛 + 1) → (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...(𝑛 + 1)) ↦ (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
3223, 31eqeq12d 2637 . . . . . 6 (𝑥 = (𝑛 + 1) → ((𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) ↔ ((𝑛 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑛 + 1)) ↦ (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
3332imbi2d 330 . . . . 5 (𝑥 = (𝑛 + 1) → (((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))))) ↔ ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → ((𝑛 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑛 + 1)) ↦ (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))))
34 oveq1 6657 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 (𝐴 + 𝐵)) = (𝑁 (𝐴 + 𝐵)))
35 oveq2 6658 . . . . . . . . 9 (𝑥 = 𝑁 → (0...𝑥) = (0...𝑁))
36 oveq1 6657 . . . . . . . . . 10 (𝑥 = 𝑁 → (𝑥C𝑘) = (𝑁C𝑘))
37 oveq1 6657 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (𝑥𝑘) = (𝑁𝑘))
3837oveq1d 6665 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝑥𝑘) 𝐴) = ((𝑁𝑘) 𝐴))
3938oveq1d 6665 . . . . . . . . . 10 (𝑥 = 𝑁 → (((𝑥𝑘) 𝐴) × (𝑘 𝐵)) = (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))
4036, 39oveq12d 6668 . . . . . . . . 9 (𝑥 = 𝑁 → ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))) = ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))
4135, 40mpteq12dv 4733 . . . . . . . 8 (𝑥 = 𝑁 → (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))))
4241oveq2d 6666 . . . . . . 7 (𝑥 = 𝑁 → (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
4334, 42eqeq12d 2637 . . . . . 6 (𝑥 = 𝑁 → ((𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) ↔ (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))))))
4443imbi2d 330 . . . . 5 (𝑥 = 𝑁 → (((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))))) ↔ ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))))
45 simpr1 1067 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → 𝐴𝑆)
46 srgbinom.g . . . . . . . . . . . 12 𝐺 = (mulGrp‘𝑅)
47 srgbinom.s . . . . . . . . . . . 12 𝑆 = (Base‘𝑅)
4846, 47mgpbas 18495 . . . . . . . . . . 11 𝑆 = (Base‘𝐺)
4945, 48syl6eleq 2711 . . . . . . . . . 10 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → 𝐴 ∈ (Base‘𝐺))
50 eqid 2622 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
51 eqid 2622 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
52 srgbinom.e . . . . . . . . . . 11 = (.g𝐺)
5350, 51, 52mulg0 17546 . . . . . . . . . 10 (𝐴 ∈ (Base‘𝐺) → (0 𝐴) = (0g𝐺))
5449, 53syl 17 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (0 𝐴) = (0g𝐺))
55 simpr2 1068 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → 𝐵𝑆)
5655, 48syl6eleq 2711 . . . . . . . . . 10 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → 𝐵 ∈ (Base‘𝐺))
5750, 51, 52mulg0 17546 . . . . . . . . . 10 (𝐵 ∈ (Base‘𝐺) → (0 𝐵) = (0g𝐺))
5856, 57syl 17 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (0 𝐵) = (0g𝐺))
5954, 58oveq12d 6668 . . . . . . . 8 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → ((0 𝐴) × (0 𝐵)) = ((0g𝐺) × (0g𝐺)))
6059oveq2d 6666 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (1 · ((0 𝐴) × (0 𝐵))) = (1 · ((0g𝐺) × (0g𝐺))))
61 eqid 2622 . . . . . . . . . . . . . 14 (1r𝑅) = (1r𝑅)
6247, 61srgidcl 18518 . . . . . . . . . . . . 13 (𝑅 ∈ SRing → (1r𝑅) ∈ 𝑆)
6362ancli 574 . . . . . . . . . . . 12 (𝑅 ∈ SRing → (𝑅 ∈ SRing ∧ (1r𝑅) ∈ 𝑆))
6463adantr 481 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑅 ∈ SRing ∧ (1r𝑅) ∈ 𝑆))
65 srgbinom.m . . . . . . . . . . . 12 × = (.r𝑅)
6647, 65, 61srglidm 18521 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ (1r𝑅) ∈ 𝑆) → ((1r𝑅) × (1r𝑅)) = (1r𝑅))
6764, 66syl 17 . . . . . . . . . 10 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → ((1r𝑅) × (1r𝑅)) = (1r𝑅))
6867oveq2d 6666 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (1 · ((1r𝑅) × (1r𝑅))) = (1 · (1r𝑅)))
69 eqid 2622 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
7069, 61srgidcl 18518 . . . . . . . . . . 11 (𝑅 ∈ SRing → (1r𝑅) ∈ (Base‘𝑅))
71 srgbinom.t . . . . . . . . . . . 12 · = (.g𝑅)
7269, 71mulg1 17548 . . . . . . . . . . 11 ((1r𝑅) ∈ (Base‘𝑅) → (1 · (1r𝑅)) = (1r𝑅))
7370, 72syl 17 . . . . . . . . . 10 (𝑅 ∈ SRing → (1 · (1r𝑅)) = (1r𝑅))
7473adantr 481 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (1 · (1r𝑅)) = (1r𝑅))
7568, 74eqtrd 2656 . . . . . . . 8 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (1 · ((1r𝑅) × (1r𝑅))) = (1r𝑅))
7646, 61ringidval 18503 . . . . . . . . 9 (1r𝑅) = (0g𝐺)
77 id 22 . . . . . . . . . . . 12 ((1r𝑅) = (0g𝐺) → (1r𝑅) = (0g𝐺))
7877, 77oveq12d 6668 . . . . . . . . . . 11 ((1r𝑅) = (0g𝐺) → ((1r𝑅) × (1r𝑅)) = ((0g𝐺) × (0g𝐺)))
7978oveq2d 6666 . . . . . . . . . 10 ((1r𝑅) = (0g𝐺) → (1 · ((1r𝑅) × (1r𝑅))) = (1 · ((0g𝐺) × (0g𝐺))))
8079, 77eqeq12d 2637 . . . . . . . . 9 ((1r𝑅) = (0g𝐺) → ((1 · ((1r𝑅) × (1r𝑅))) = (1r𝑅) ↔ (1 · ((0g𝐺) × (0g𝐺))) = (0g𝐺)))
8176, 80ax-mp 5 . . . . . . . 8 ((1 · ((1r𝑅) × (1r𝑅))) = (1r𝑅) ↔ (1 · ((0g𝐺) × (0g𝐺))) = (0g𝐺))
8275, 81sylib 208 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (1 · ((0g𝐺) × (0g𝐺))) = (0g𝐺))
8360, 82eqtrd 2656 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (1 · ((0 𝐴) × (0 𝐵))) = (0g𝐺))
84 0z 11388 . . . . . . . . . . 11 0 ∈ ℤ
85 fzsn 12383 . . . . . . . . . . 11 (0 ∈ ℤ → (0...0) = {0})
8684, 85ax-mp 5 . . . . . . . . . 10 (0...0) = {0}
8786a1i 11 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (0...0) = {0})
8887mpteq1d 4738 . . . . . . . 8 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ {0} ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵)))))
8988oveq2d 6666 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑅 Σg (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ {0} ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))))
90 srgmnd 18509 . . . . . . . . 9 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
9190adantr 481 . . . . . . . 8 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → 𝑅 ∈ Mnd)
92 c0ex 10034 . . . . . . . . 9 0 ∈ V
9392a1i 11 . . . . . . . 8 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → 0 ∈ V)
9476, 62syl5eqelr 2706 . . . . . . . . . 10 (𝑅 ∈ SRing → (0g𝐺) ∈ 𝑆)
9594adantr 481 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (0g𝐺) ∈ 𝑆)
9683, 95eqeltrd 2701 . . . . . . . 8 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (1 · ((0 𝐴) × (0 𝐵))) ∈ 𝑆)
97 oveq2 6658 . . . . . . . . . . 11 (𝑘 = 0 → (0C𝑘) = (0C0))
98 0nn0 11307 . . . . . . . . . . . 12 0 ∈ ℕ0
99 bcn0 13097 . . . . . . . . . . . 12 (0 ∈ ℕ0 → (0C0) = 1)
10098, 99ax-mp 5 . . . . . . . . . . 11 (0C0) = 1
10197, 100syl6eq 2672 . . . . . . . . . 10 (𝑘 = 0 → (0C𝑘) = 1)
102 oveq2 6658 . . . . . . . . . . . . 13 (𝑘 = 0 → (0 − 𝑘) = (0 − 0))
103 0m0e0 11130 . . . . . . . . . . . . 13 (0 − 0) = 0
104102, 103syl6eq 2672 . . . . . . . . . . . 12 (𝑘 = 0 → (0 − 𝑘) = 0)
105104oveq1d 6665 . . . . . . . . . . 11 (𝑘 = 0 → ((0 − 𝑘) 𝐴) = (0 𝐴))
106 oveq1 6657 . . . . . . . . . . 11 (𝑘 = 0 → (𝑘 𝐵) = (0 𝐵))
107105, 106oveq12d 6668 . . . . . . . . . 10 (𝑘 = 0 → (((0 − 𝑘) 𝐴) × (𝑘 𝐵)) = ((0 𝐴) × (0 𝐵)))
108101, 107oveq12d 6668 . . . . . . . . 9 (𝑘 = 0 → ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))) = (1 · ((0 𝐴) × (0 𝐵))))
10947, 108gsumsn 18354 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ 0 ∈ V ∧ (1 · ((0 𝐴) × (0 𝐵))) ∈ 𝑆) → (𝑅 Σg (𝑘 ∈ {0} ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))) = (1 · ((0 𝐴) × (0 𝐵))))
11091, 93, 96, 109syl3anc 1326 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑅 Σg (𝑘 ∈ {0} ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))) = (1 · ((0 𝐴) × (0 𝐵))))
11189, 110eqtrd 2656 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑅 Σg (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))) = (1 · ((0 𝐴) × (0 𝐵))))
112 srgbinom.a . . . . . . . . . 10 + = (+g𝑅)
11347, 112mndcl 17301 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ 𝐴𝑆𝐵𝑆) → (𝐴 + 𝐵) ∈ 𝑆)
11491, 45, 55, 113syl3anc 1326 . . . . . . . 8 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝐴 + 𝐵) ∈ 𝑆)
115114, 48syl6eleq 2711 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝐴 + 𝐵) ∈ (Base‘𝐺))
11650, 51, 52mulg0 17546 . . . . . . 7 ((𝐴 + 𝐵) ∈ (Base‘𝐺) → (0 (𝐴 + 𝐵)) = (0g𝐺))
117115, 116syl 17 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (0 (𝐴 + 𝐵)) = (0g𝐺))
11883, 111, 1173eqtr4rd 2667 . . . . 5 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (0 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))))
119 simprl 794 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)))) → 𝑅 ∈ SRing)
12045adantl 482 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)))) → 𝐴𝑆)
12155adantl 482 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)))) → 𝐵𝑆)
122 simprr3 1111 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)))) → (𝐴 × 𝐵) = (𝐵 × 𝐴))
123 simpl 473 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)))) → 𝑛 ∈ ℕ0)
124 id 22 . . . . . . . 8 ((𝑛 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵))))) → (𝑛 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵))))))
12547, 65, 71, 112, 46, 52, 119, 120, 121, 122, 123, 124srgbinomlem 18544 . . . . . . 7 (((𝑛 ∈ ℕ0 ∧ (𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)))) ∧ (𝑛 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵)))))) → ((𝑛 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑛 + 1)) ↦ (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
126125exp31 630 . . . . . 6 (𝑛 ∈ ℕ0 → ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → ((𝑛 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵))))) → ((𝑛 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑛 + 1)) ↦ (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))))
127126a2d 29 . . . . 5 (𝑛 ∈ ℕ0 → (((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑛 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵)))))) → ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → ((𝑛 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑛 + 1)) ↦ (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))))
12811, 22, 33, 44, 118, 127nn0ind 11472 . . . 4 (𝑁 ∈ ℕ0 → ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))))))
129128expd 452 . . 3 (𝑁 ∈ ℕ0 → (𝑅 ∈ SRing → ((𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))))
130129impcom 446 . 2 ((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) → ((𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))))))
131130imp 445 1 (((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  {csn 4177  cmpt 4729  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  cmin 10266  0cn0 11292  cz 11377  ...cfz 12326  Ccbc 13089  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  0gc0g 16100   Σg cgsu 16101  Mndcmnd 17294  .gcmg 17540  mulGrpcmgp 18489  1rcur 18501  SRingcsrg 18505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-fac 13061  df-bc 13090  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-mgp 18490  df-ur 18502  df-srg 18506
This theorem is referenced by:  csrgbinom  18546
  Copyright terms: Public domain W3C validator