| Step | Hyp | Ref
| Expression |
| 1 | | id 22 |
. 2
⊢ (𝜑 → 𝜑) |
| 2 | | dvnmul.n |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 3 | | nn0uz 11722 |
. . . . 5
⊢
ℕ0 = (ℤ≥‘0) |
| 4 | 2, 3 | syl6eleq 2711 |
. . . 4
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
| 5 | | eluzfz2 12349 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘0) → 𝑁 ∈ (0...𝑁)) |
| 6 | 4, 5 | syl 17 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (0...𝑁)) |
| 7 | | eleq1 2689 |
. . . . 5
⊢ (𝑛 = 𝑁 → (𝑛 ∈ (0...𝑁) ↔ 𝑁 ∈ (0...𝑁))) |
| 8 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁)) |
| 9 | | oveq2 6658 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁)) |
| 10 | 9 | sumeq1d 14431 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...𝑁)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))) |
| 11 | | oveq1 6657 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑁 → (𝑛C𝑘) = (𝑁C𝑘)) |
| 12 | | oveq1 6657 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑁 → (𝑛 − 𝑘) = (𝑁 − 𝑘)) |
| 13 | 12 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑁 → (𝐷‘(𝑛 − 𝑘)) = (𝐷‘(𝑁 − 𝑘))) |
| 14 | 13 | fveq1d 6193 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑁 → ((𝐷‘(𝑛 − 𝑘))‘𝑥) = ((𝐷‘(𝑁 − 𝑘))‘𝑥)) |
| 15 | 14 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑁 → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)) = (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥))) |
| 16 | 11, 15 | oveq12d 6668 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → ((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))) = ((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥)))) |
| 17 | 16 | sumeq2ad 14434 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → Σ𝑘 ∈ (0...𝑁)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥)))) |
| 18 | 10, 17 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥)))) |
| 19 | 18 | mpteq2dv 4745 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥))))) |
| 20 | 8, 19 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥)))))) |
| 21 | 20 | imbi2d 330 |
. . . . 5
⊢ (𝑛 = 𝑁 → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥))))))) |
| 22 | 7, 21 | imbi12d 334 |
. . . 4
⊢ (𝑛 = 𝑁 → ((𝑛 ∈ (0...𝑁) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))))) ↔ (𝑁 ∈ (0...𝑁) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥)))))))) |
| 23 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑚 = 0 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘0)) |
| 24 | | simpl 473 |
. . . . . . . . . 10
⊢ ((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) → 𝑚 = 0) |
| 25 | 24 | oveq2d 6666 |
. . . . . . . . 9
⊢ ((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) → (0...𝑚) = (0...0)) |
| 26 | | simpll 790 |
. . . . . . . . . . 11
⊢ (((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...0)) → 𝑚 = 0) |
| 27 | 26 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...0)) → (𝑚C𝑘) = (0C𝑘)) |
| 28 | 26 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ (((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...0)) → (𝑚 − 𝑘) = (0 − 𝑘)) |
| 29 | 28 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...0)) → (𝐷‘(𝑚 − 𝑘)) = (𝐷‘(0 − 𝑘))) |
| 30 | 29 | fveq1d 6193 |
. . . . . . . . . . 11
⊢ (((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...0)) → ((𝐷‘(𝑚 − 𝑘))‘𝑥) = ((𝐷‘(0 − 𝑘))‘𝑥)) |
| 31 | 30 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...0)) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)) = (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))) |
| 32 | 27, 31 | oveq12d 6668 |
. . . . . . . . 9
⊢ (((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...0)) → ((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = ((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥)))) |
| 33 | 25, 32 | sumeq12rdv 14438 |
. . . . . . . 8
⊢ ((𝑚 = 0 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥)))) |
| 34 | 33 | mpteq2dva 4744 |
. . . . . . 7
⊢ (𝑚 = 0 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))))) |
| 35 | 23, 34 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑚 = 0 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘0) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥)))))) |
| 36 | 35 | imbi2d 330 |
. . . . 5
⊢ (𝑚 = 0 → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘0) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))))))) |
| 37 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑚 = 𝑖 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖)) |
| 38 | | simpl 473 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) → 𝑚 = 𝑖) |
| 39 | 38 | oveq2d 6666 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) → (0...𝑚) = (0...𝑖)) |
| 40 | | simpll 790 |
. . . . . . . . . . 11
⊢ (((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → 𝑚 = 𝑖) |
| 41 | 40 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → (𝑚C𝑘) = (𝑖C𝑘)) |
| 42 | 40 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ (((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → (𝑚 − 𝑘) = (𝑖 − 𝑘)) |
| 43 | 42 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘(𝑚 − 𝑘)) = (𝐷‘(𝑖 − 𝑘))) |
| 44 | 43 | fveq1d 6193 |
. . . . . . . . . . 11
⊢ (((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐷‘(𝑚 − 𝑘))‘𝑥) = ((𝐷‘(𝑖 − 𝑘))‘𝑥)) |
| 45 | 44 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)) = (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) |
| 46 | 41, 45 | oveq12d 6668 |
. . . . . . . . 9
⊢ (((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)))) |
| 47 | 39, 46 | sumeq12rdv 14438 |
. . . . . . . 8
⊢ ((𝑚 = 𝑖 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)))) |
| 48 | 47 | mpteq2dva 4744 |
. . . . . . 7
⊢ (𝑚 = 𝑖 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) |
| 49 | 37, 48 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑚 = 𝑖 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)))))) |
| 50 | 49 | imbi2d 330 |
. . . . 5
⊢ (𝑚 = 𝑖 → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))))) |
| 51 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑚 = (𝑖 + 1) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1))) |
| 52 | | simpl 473 |
. . . . . . . . . 10
⊢ ((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) → 𝑚 = (𝑖 + 1)) |
| 53 | 52 | oveq2d 6666 |
. . . . . . . . 9
⊢ ((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) → (0...𝑚) = (0...(𝑖 + 1))) |
| 54 | | simpll 790 |
. . . . . . . . . . 11
⊢ (((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑚 = (𝑖 + 1)) |
| 55 | 54 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑚C𝑘) = ((𝑖 + 1)C𝑘)) |
| 56 | 54 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ (((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑚 − 𝑘) = ((𝑖 + 1) − 𝑘)) |
| 57 | 56 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝐷‘(𝑚 − 𝑘)) = (𝐷‘((𝑖 + 1) − 𝑘))) |
| 58 | 57 | fveq1d 6193 |
. . . . . . . . . . 11
⊢ (((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝐷‘(𝑚 − 𝑘))‘𝑥) = ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)) |
| 59 | 58 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)) = (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
| 60 | 55, 59 | oveq12d 6668 |
. . . . . . . . 9
⊢ (((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 61 | 53, 60 | sumeq12rdv 14438 |
. . . . . . . 8
⊢ ((𝑚 = (𝑖 + 1) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 62 | 61 | mpteq2dva 4744 |
. . . . . . 7
⊢ (𝑚 = (𝑖 + 1) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 63 | 51, 62 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑚 = (𝑖 + 1) → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
| 64 | 63 | imbi2d 330 |
. . . . 5
⊢ (𝑚 = (𝑖 + 1) → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))))) |
| 65 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛)) |
| 66 | | simpl 473 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) → 𝑚 = 𝑛) |
| 67 | 66 | oveq2d 6666 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) → (0...𝑚) = (0...𝑛)) |
| 68 | | simpll 790 |
. . . . . . . . . . 11
⊢ (((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑛)) → 𝑚 = 𝑛) |
| 69 | 68 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑛)) → (𝑚C𝑘) = (𝑛C𝑘)) |
| 70 | 68 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ (((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑛)) → (𝑚 − 𝑘) = (𝑛 − 𝑘)) |
| 71 | 70 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑛)) → (𝐷‘(𝑚 − 𝑘)) = (𝐷‘(𝑛 − 𝑘))) |
| 72 | 71 | fveq1d 6193 |
. . . . . . . . . . 11
⊢ (((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑛)) → ((𝐷‘(𝑚 − 𝑘))‘𝑥) = ((𝐷‘(𝑛 − 𝑘))‘𝑥)) |
| 73 | 72 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑛)) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)) = (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))) |
| 74 | 69, 73 | oveq12d 6668 |
. . . . . . . . 9
⊢ (((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = ((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))) |
| 75 | 67, 74 | sumeq12rdv 14438 |
. . . . . . . 8
⊢ ((𝑚 = 𝑛 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))) |
| 76 | 75 | mpteq2dva 4744 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))))) |
| 77 | 65, 76 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥)))) ↔ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))))) |
| 78 | 77 | imbi2d 330 |
. . . . 5
⊢ (𝑚 = 𝑛 → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑚) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑚)((𝑚C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑚 − 𝑘))‘𝑥))))) ↔ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥))))))) |
| 79 | | dvnmul.s |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| 80 | | recnprss 23668 |
. . . . . . . . 9
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) |
| 81 | 79, 80 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 82 | | dvnmul.a |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| 83 | | dvnmul.cc |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
| 84 | 82, 83 | mulcld 10060 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 · 𝐵) ∈ ℂ) |
| 85 | | restsspw 16092 |
. . . . . . . . . . 11
⊢
((TopOpen‘ℂfld) ↾t 𝑆) ⊆ 𝒫 𝑆 |
| 86 | | dvnmul.x |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
| 87 | 85, 86 | sseldi 3601 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝒫 𝑆) |
| 88 | | elpwi 4168 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝒫 𝑆 → 𝑋 ⊆ 𝑆) |
| 89 | 87, 88 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 90 | | cnex 10017 |
. . . . . . . . . 10
⊢ ℂ
∈ V |
| 91 | 90 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ℂ ∈
V) |
| 92 | 84, 89, 91, 79 | mptelpm 39357 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (ℂ
↑pm 𝑆)) |
| 93 | | dvn0 23687 |
. . . . . . . 8
⊢ ((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (ℂ
↑pm 𝑆)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘0) = (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))) |
| 94 | 81, 92, 93 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘0) = (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))) |
| 95 | | 0z 11388 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℤ |
| 96 | | fzsn 12383 |
. . . . . . . . . . . 12
⊢ (0 ∈
ℤ → (0...0) = {0}) |
| 97 | 95, 96 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (0...0) =
{0} |
| 98 | 97 | sumeq1i 14428 |
. . . . . . . . . 10
⊢
Σ𝑘 ∈
(0...0)((0C𝑘) ·
(((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))) = Σ𝑘 ∈ {0} ((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))) |
| 99 | 98 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))) = Σ𝑘 ∈ {0} ((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥)))) |
| 100 | | nfcvd 2765 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Ⅎ𝑘(𝐴 · 𝐵)) |
| 101 | | nfv 1843 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝜑 ∧ 𝑥 ∈ 𝑋) |
| 102 | | oveq2 6658 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → (0C𝑘) = (0C0)) |
| 103 | | 0nn0 11307 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℕ0 |
| 104 | | bcn0 13097 |
. . . . . . . . . . . . . . . 16
⊢ (0 ∈
ℕ0 → (0C0) = 1) |
| 105 | 103, 104 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (0C0) =
1 |
| 106 | 105 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → (0C0) =
1) |
| 107 | 102, 106 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 0 → (0C𝑘) = 1) |
| 108 | 107 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → (0C𝑘) = 1) |
| 109 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (𝐶‘𝑘) = (𝐶‘0)) |
| 110 | 109 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 = 0) → (𝐶‘𝑘) = (𝐶‘0)) |
| 111 | | dvnmul.c |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐶 = (𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 112 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 𝑛 → ((𝑆 D𝑛 𝐹)‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑛)) |
| 113 | 112 | cbvmptv 4750 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐹)‘𝑘)) = (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐹)‘𝑛)) |
| 114 | 111, 113 | eqtri 2644 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐶 = (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐹)‘𝑛)) |
| 115 | 114 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐶 = (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐹)‘𝑛))) |
| 116 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 0 → ((𝑆 D𝑛 𝐹)‘𝑛) = ((𝑆 D𝑛 𝐹)‘0)) |
| 117 | 116 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 = 0) → ((𝑆 D𝑛 𝐹)‘𝑛) = ((𝑆 D𝑛 𝐹)‘0)) |
| 118 | | eluzfz1 12348 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑁)) |
| 119 | 4, 118 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 0 ∈ (0...𝑁)) |
| 120 | | fvexd 6203 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘0) ∈ V) |
| 121 | 115, 117,
119, 120 | fvmptd 6288 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐶‘0) = ((𝑆 D𝑛 𝐹)‘0)) |
| 122 | 121 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 = 0) → (𝐶‘0) = ((𝑆 D𝑛 𝐹)‘0)) |
| 123 | 110, 122 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 = 0) → (𝐶‘𝑘) = ((𝑆 D𝑛 𝐹)‘0)) |
| 124 | | dvnmulf |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 𝐴) |
| 125 | 82, 89, 91, 79 | mptelpm 39357 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (ℂ ↑pm
𝑆)) |
| 126 | 124, 125 | syl5eqel 2705 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
𝑆)) |
| 127 | | dvn0 23687 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → ((𝑆 D𝑛 𝐹)‘0) = 𝐹) |
| 128 | 81, 126, 127 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘0) = 𝐹) |
| 129 | 128 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝑆 D𝑛 𝐹)‘0) = 𝐹) |
| 130 | 123, 129 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 = 0) → (𝐶‘𝑘) = 𝐹) |
| 131 | 130 | fveq1d 6193 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝐶‘𝑘)‘𝑥) = (𝐹‘𝑥)) |
| 132 | 131 | adantlr 751 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → ((𝐶‘𝑘)‘𝑥) = (𝐹‘𝑥)) |
| 133 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 134 | 124 | fvmpt2 6291 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ℂ) → (𝐹‘𝑥) = 𝐴) |
| 135 | 133, 82, 134 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) = 𝐴) |
| 136 | 135 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → (𝐹‘𝑥) = 𝐴) |
| 137 | 132, 136 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → ((𝐶‘𝑘)‘𝑥) = 𝐴) |
| 138 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (0 − 𝑘) = (0 −
0)) |
| 139 | | 0m0e0 11130 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0
− 0) = 0 |
| 140 | 139 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (0 − 0) =
0) |
| 141 | 138, 140 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 0 → (0 − 𝑘) = 0) |
| 142 | 141 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (𝐷‘(0 − 𝑘)) = (𝐷‘0)) |
| 143 | 142 | fveq1d 6193 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → ((𝐷‘(0 − 𝑘))‘𝑥) = ((𝐷‘0)‘𝑥)) |
| 144 | 143 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 = 0) → ((𝐷‘(0 − 𝑘))‘𝑥) = ((𝐷‘0)‘𝑥)) |
| 145 | 144 | adantlr 751 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → ((𝐷‘(0 − 𝑘))‘𝑥) = ((𝐷‘0)‘𝑥)) |
| 146 | | dvnmul.d |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐷 = (𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑘)) |
| 147 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑛 → ((𝑆 D𝑛 𝐺)‘𝑘) = ((𝑆 D𝑛 𝐺)‘𝑛)) |
| 148 | 147 | cbvmptv 4750 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑘)) = (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛)) |
| 149 | 146, 148 | eqtri 2644 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐷 = (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛)) |
| 150 | 149 | fveq1i 6192 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐷‘0) = ((𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛))‘0) |
| 151 | 150 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐷‘0) = ((𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛))‘0)) |
| 152 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛)) = (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛))) |
| 153 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 0 → ((𝑆 D𝑛 𝐺)‘𝑛) = ((𝑆 D𝑛 𝐺)‘0)) |
| 154 | 153 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 = 0) → ((𝑆 D𝑛 𝐺)‘𝑛) = ((𝑆 D𝑛 𝐺)‘0)) |
| 155 | | dvnmul.f |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐺 = (𝑥 ∈ 𝑋 ↦ 𝐵) |
| 156 | 83, 89, 91, 79 | mptelpm 39357 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (ℂ ↑pm
𝑆)) |
| 157 | 155, 156 | syl5eqel 2705 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐺 ∈ (ℂ ↑pm
𝑆)) |
| 158 | | dvn0 23687 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑆 ⊆ ℂ ∧ 𝐺 ∈ (ℂ
↑pm 𝑆)) → ((𝑆 D𝑛 𝐺)‘0) = 𝐺) |
| 159 | 81, 157, 158 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑆 D𝑛 𝐺)‘0) = 𝐺) |
| 160 | 159 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 = 0) → ((𝑆 D𝑛 𝐺)‘0) = 𝐺) |
| 161 | 154, 160 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 = 0) → ((𝑆 D𝑛 𝐺)‘𝑛) = 𝐺) |
| 162 | 155 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| 163 | | mptexg 6484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑋 ∈ 𝒫 𝑆 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ V) |
| 164 | 87, 163 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ V) |
| 165 | 162, 164 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐺 ∈ V) |
| 166 | 152, 161,
119, 165 | fvmptd 6288 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛))‘0) = 𝐺) |
| 167 | 151, 166 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐷‘0) = 𝐺) |
| 168 | 167 | fveq1d 6193 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐷‘0)‘𝑥) = (𝐺‘𝑥)) |
| 169 | 168 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → ((𝐷‘0)‘𝑥) = (𝐺‘𝑥)) |
| 170 | 162, 83 | fvmpt2d 6293 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) = 𝐵) |
| 171 | 170 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → (𝐺‘𝑥) = 𝐵) |
| 172 | 145, 169,
171 | 3eqtrd 2660 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → ((𝐷‘(0 − 𝑘))‘𝑥) = 𝐵) |
| 173 | 137, 172 | oveq12d 6668 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥)) = (𝐴 · 𝐵)) |
| 174 | 108, 173 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → ((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))) = (1 · (𝐴 · 𝐵))) |
| 175 | 84 | mulid2d 10058 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 · (𝐴 · 𝐵)) = (𝐴 · 𝐵)) |
| 176 | 175 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → (1 · (𝐴 · 𝐵)) = (𝐴 · 𝐵)) |
| 177 | 174, 176 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 = 0) → ((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))) = (𝐴 · 𝐵)) |
| 178 | | 0re 10040 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
| 179 | 178 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 0 ∈ ℝ) |
| 180 | 100, 101,
177, 179, 84 | sumsnd 39185 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ {0} ((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))) = (𝐴 · 𝐵)) |
| 181 | 99, 180 | eqtr2d 2657 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 · 𝐵) = Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥)))) |
| 182 | 181 | mpteq2dva 4744 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))))) |
| 183 | 94, 182 | eqtrd 2656 |
. . . . . 6
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘0) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥))))) |
| 184 | 183 | a1i 11 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘0) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘0) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...0)((0C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(0 − 𝑘))‘𝑥)))))) |
| 185 | | simp3 1063 |
. . . . . . 7
⊢ ((𝑖 ∈ (0..^𝑁) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) ∧ 𝜑) → 𝜑) |
| 186 | | simp1 1061 |
. . . . . . 7
⊢ ((𝑖 ∈ (0..^𝑁) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) ∧ 𝜑) → 𝑖 ∈ (0..^𝑁)) |
| 187 | | simp2 1062 |
. . . . . . . 8
⊢ ((𝑖 ∈ (0..^𝑁) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) ∧ 𝜑) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)))))) |
| 188 | | pm3.35 611 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)))))) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) |
| 189 | 185, 187,
188 | syl2anc 693 |
. . . . . . 7
⊢ ((𝑖 ∈ (0..^𝑁) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) |
| 190 | 81 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝑆 ⊆ ℂ) |
| 191 | 92 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (ℂ
↑pm 𝑆)) |
| 192 | | elfzonn0 12512 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℕ0) |
| 193 | 192 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0) |
| 194 | | dvnp1 23688 |
. . . . . . . . . 10
⊢ ((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (ℂ
↑pm 𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖))) |
| 195 | 190, 191,
193, 194 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖))) |
| 196 | 195 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖))) |
| 197 | | simpr 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) |
| 198 | 197 | oveq2d 6666 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) → (𝑆 D ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)))))) |
| 199 | | eqid 2622 |
. . . . . . . . . . 11
⊢
((TopOpen‘ℂfld) ↾t 𝑆) =
((TopOpen‘ℂfld) ↾t 𝑆) |
| 200 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 201 | 79 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝑆 ∈ {ℝ, ℂ}) |
| 202 | 86 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
| 203 | | fzfid 12772 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (0...𝑖) ∈ Fin) |
| 204 | 192 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑖 ∈ ℕ0) |
| 205 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℤ) |
| 206 | 205 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℤ) |
| 207 | 204, 206 | bccld 39531 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖C𝑘) ∈
ℕ0) |
| 208 | 207 | nn0cnd 11353 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖C𝑘) ∈ ℂ) |
| 209 | 208 | adantll 750 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖C𝑘) ∈ ℂ) |
| 210 | 209 | 3adant3 1081 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → (𝑖C𝑘) ∈ ℂ) |
| 211 | | simpll 790 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝜑) |
| 212 | | 0zd 11389 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 0 ∈ ℤ) |
| 213 | | elfzoel2 12469 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → 𝑁 ∈ ℤ) |
| 214 | 213 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑁 ∈ ℤ) |
| 215 | 212, 214,
206 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈
ℤ)) |
| 216 | | elfzle1 12344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (0...𝑖) → 0 ≤ 𝑘) |
| 217 | 216 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 0 ≤ 𝑘) |
| 218 | 206 | zred 11482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℝ) |
| 219 | 213 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → 𝑁 ∈ ℝ) |
| 220 | 219 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑁 ∈ ℝ) |
| 221 | 192 | nn0red 11352 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℝ) |
| 222 | 221 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑖 ∈ ℝ) |
| 223 | | elfzle2 12345 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 ≤ 𝑖) |
| 224 | 223 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ≤ 𝑖) |
| 225 | | elfzolt2 12479 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 < 𝑁) |
| 226 | 225 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑖 < 𝑁) |
| 227 | 218, 222,
220, 224, 226 | lelttrd 10195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 < 𝑁) |
| 228 | 218, 220,
227 | ltled 10185 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ≤ 𝑁) |
| 229 | 215, 217,
228 | jca32 558 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (0 ≤
𝑘 ∧ 𝑘 ≤ 𝑁))) |
| 230 | | elfz2 12333 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (0...𝑁) ↔ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (0 ≤
𝑘 ∧ 𝑘 ≤ 𝑁))) |
| 231 | 229, 230 | sylibr 224 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ (0...𝑁)) |
| 232 | 231 | adantll 750 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ (0...𝑁)) |
| 233 | | dvnmul.dvnf |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑘):𝑋⟶ℂ) |
| 234 | 111 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐶 = (𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐹)‘𝑘))) |
| 235 | | fvexd 6203 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V) |
| 236 | 234, 235 | fvmpt2d 6293 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐶‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 237 | 236 | feq1d 6030 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝐶‘𝑘):𝑋⟶ℂ ↔ ((𝑆 D𝑛 𝐹)‘𝑘):𝑋⟶ℂ)) |
| 238 | 233, 237 | mpbird 247 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐶‘𝑘):𝑋⟶ℂ) |
| 239 | 211, 232,
238 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐶‘𝑘):𝑋⟶ℂ) |
| 240 | 239 | 3adant3 1081 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → (𝐶‘𝑘):𝑋⟶ℂ) |
| 241 | | simp3 1063 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 242 | 240, 241 | ffvelrnd 6360 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → ((𝐶‘𝑘)‘𝑥) ∈ ℂ) |
| 243 | 192 | nn0zd 11480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℤ) |
| 244 | 243 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑖 ∈ ℤ) |
| 245 | 244, 206 | zsubcld 11487 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) ∈ ℤ) |
| 246 | 212, 214,
245 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑖 − 𝑘) ∈ ℤ)) |
| 247 | | elfzel2 12340 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (0...𝑖) → 𝑖 ∈ ℤ) |
| 248 | 247 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (0...𝑖) → 𝑖 ∈ ℝ) |
| 249 | 205 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℝ) |
| 250 | 248, 249 | subge0d 10617 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (0...𝑖) → (0 ≤ (𝑖 − 𝑘) ↔ 𝑘 ≤ 𝑖)) |
| 251 | 223, 250 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ (0...𝑖) → 0 ≤ (𝑖 − 𝑘)) |
| 252 | 251 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 0 ≤ (𝑖 − 𝑘)) |
| 253 | 222, 218 | resubcld 10458 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) ∈ ℝ) |
| 254 | 220, 218 | resubcld 10458 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑁 − 𝑘) ∈ ℝ) |
| 255 | 178 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 0 ∈ ℝ) |
| 256 | 220, 255 | jca 554 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑁 ∈ ℝ ∧ 0 ∈
ℝ)) |
| 257 | | resubcl 10345 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑁 ∈ ℝ ∧ 0 ∈
ℝ) → (𝑁 −
0) ∈ ℝ) |
| 258 | 256, 257 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑁 − 0) ∈ ℝ) |
| 259 | 222, 220,
218, 226 | ltsub1dd 10639 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) < (𝑁 − 𝑘)) |
| 260 | 255, 218,
220, 217 | lesub2dd 10644 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑁 − 𝑘) ≤ (𝑁 − 0)) |
| 261 | 253, 254,
258, 259, 260 | ltletrd 10197 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) < (𝑁 − 0)) |
| 262 | 219 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ (0..^𝑁) → 𝑁 ∈ ℂ) |
| 263 | 262 | subid1d 10381 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0..^𝑁) → (𝑁 − 0) = 𝑁) |
| 264 | 263 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑁 − 0) = 𝑁) |
| 265 | 261, 264 | breqtrd 4679 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) < 𝑁) |
| 266 | 253, 220,
265 | ltled 10185 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) ≤ 𝑁) |
| 267 | 246, 252,
266 | jca32 558 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑖 − 𝑘) ∈ ℤ) ∧ (0 ≤ (𝑖 − 𝑘) ∧ (𝑖 − 𝑘) ≤ 𝑁))) |
| 268 | | elfz2 12333 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 − 𝑘) ∈ (0...𝑁) ↔ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑖 − 𝑘) ∈ ℤ) ∧ (0 ≤ (𝑖 − 𝑘) ∧ (𝑖 − 𝑘) ≤ 𝑁))) |
| 269 | 267, 268 | sylibr 224 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) ∈ (0...𝑁)) |
| 270 | 269 | adantll 750 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) ∈ (0...𝑁)) |
| 271 | | ovex 6678 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 − 𝑘) ∈ V |
| 272 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑖 − 𝑘) → (𝑗 ∈ (0...𝑁) ↔ (𝑖 − 𝑘) ∈ (0...𝑁))) |
| 273 | 272 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑖 − 𝑘) → ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ (𝑖 − 𝑘) ∈ (0...𝑁)))) |
| 274 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑖 − 𝑘) → ((𝑆 D𝑛 𝐺)‘𝑗) = ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘))) |
| 275 | 274 | feq1d 6030 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑖 − 𝑘) → (((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)):𝑋⟶ℂ)) |
| 276 | 273, 275 | imbi12d 334 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (𝑖 − 𝑘) → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ (𝑖 − 𝑘) ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)):𝑋⟶ℂ))) |
| 277 | | nfv 1843 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ) |
| 278 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑗 → (𝑘 ∈ (0...𝑁) ↔ 𝑗 ∈ (0...𝑁))) |
| 279 | 278 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑗 ∈ (0...𝑁)))) |
| 280 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑗 → ((𝑆 D𝑛 𝐺)‘𝑘) = ((𝑆 D𝑛 𝐺)‘𝑗)) |
| 281 | 280 | feq1d 6030 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑗 → (((𝑆 D𝑛 𝐺)‘𝑘):𝑋⟶ℂ ↔ ((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ)) |
| 282 | 279, 281 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ))) |
| 283 | | dvnmul.dvng |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑘):𝑋⟶ℂ) |
| 284 | 277, 282,
283 | chvar 2262 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ) |
| 285 | 271, 276,
284 | vtocl 3259 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑖 − 𝑘) ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)):𝑋⟶ℂ) |
| 286 | 211, 270,
285 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)):𝑋⟶ℂ) |
| 287 | 149 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝐷 = (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛))) |
| 288 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = (𝑖 − 𝑘) → ((𝑆 D𝑛 𝐺)‘𝑛) = ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘))) |
| 289 | 288 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑛 = (𝑖 − 𝑘)) → ((𝑆 D𝑛 𝐺)‘𝑛) = ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘))) |
| 290 | | fvexd 6203 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)) ∈ V) |
| 291 | 287, 289,
269, 290 | fvmptd 6288 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘(𝑖 − 𝑘)) = ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘))) |
| 292 | 291 | adantll 750 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘(𝑖 − 𝑘)) = ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘))) |
| 293 | 292 | feq1d 6030 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐷‘(𝑖 − 𝑘)):𝑋⟶ℂ ↔ ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)):𝑋⟶ℂ)) |
| 294 | 286, 293 | mpbird 247 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘(𝑖 − 𝑘)):𝑋⟶ℂ) |
| 295 | 294 | 3adant3 1081 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → (𝐷‘(𝑖 − 𝑘)):𝑋⟶ℂ) |
| 296 | 295, 241 | ffvelrnd 6360 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → ((𝐷‘(𝑖 − 𝑘))‘𝑥) ∈ ℂ) |
| 297 | 242, 296 | mulcld 10060 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) ∈ ℂ) |
| 298 | 210, 297 | mulcld 10060 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) ∈ ℂ) |
| 299 | 210 | 3expa 1265 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (𝑖C𝑘) ∈ ℂ) |
| 300 | 244 | peano2zd 11485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 + 1) ∈ ℤ) |
| 301 | 300, 206 | zsubcld 11487 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1) − 𝑘) ∈ ℤ) |
| 302 | 212, 214,
301 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝑖 + 1) − 𝑘) ∈ ℤ)) |
| 303 | | peano2re 10209 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 ∈ ℝ → (𝑖 + 1) ∈
ℝ) |
| 304 | 248, 303 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (0...𝑖) → (𝑖 + 1) ∈ ℝ) |
| 305 | | peano2re 10209 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 ∈ ℝ → (𝑘 + 1) ∈
ℝ) |
| 306 | 249, 305 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ (0...𝑖) → (𝑘 + 1) ∈ ℝ) |
| 307 | 249 | ltp1d 10954 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 < (𝑘 + 1)) |
| 308 | | 1red 10055 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 ∈ (0...𝑖) → 1 ∈ ℝ) |
| 309 | 249, 248,
308, 223 | leadd1dd 10641 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ (0...𝑖) → (𝑘 + 1) ≤ (𝑖 + 1)) |
| 310 | 249, 306,
304, 307, 309 | ltletrd 10197 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 < (𝑖 + 1)) |
| 311 | 249, 304,
310 | ltled 10185 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 ≤ (𝑖 + 1)) |
| 312 | 311 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ≤ (𝑖 + 1)) |
| 313 | 222, 303 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 + 1) ∈ ℝ) |
| 314 | 313, 218 | subge0d 10617 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (0 ≤ ((𝑖 + 1) − 𝑘) ↔ 𝑘 ≤ (𝑖 + 1))) |
| 315 | 312, 314 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 0 ≤ ((𝑖 + 1) − 𝑘)) |
| 316 | 313, 218 | resubcld 10458 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1) − 𝑘) ∈ ℝ) |
| 317 | | elfzop1le2 39502 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ≤ 𝑁) |
| 318 | 317 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 + 1) ≤ 𝑁) |
| 319 | 313, 220,
218, 318 | lesub1dd 10643 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1) − 𝑘) ≤ (𝑁 − 𝑘)) |
| 320 | 260, 264 | breqtrd 4679 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑁 − 𝑘) ≤ 𝑁) |
| 321 | 316, 254,
220, 319, 320 | letrd 10194 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1) − 𝑘) ≤ 𝑁) |
| 322 | 302, 315,
321 | jca32 558 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝑖 + 1) − 𝑘) ∈ ℤ) ∧ (0 ≤ ((𝑖 + 1) − 𝑘) ∧ ((𝑖 + 1) − 𝑘) ≤ 𝑁))) |
| 323 | | elfz2 12333 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑖 + 1) − 𝑘) ∈ (0...𝑁) ↔ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝑖 + 1) − 𝑘) ∈ ℤ) ∧ (0 ≤ ((𝑖 + 1) − 𝑘) ∧ ((𝑖 + 1) − 𝑘) ≤ 𝑁))) |
| 324 | 322, 323 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) |
| 325 | 324 | adantll 750 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) |
| 326 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 + 1) − 𝑘) ∈ V |
| 327 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → (𝑗 ∈ (0...𝑁) ↔ ((𝑖 + 1) − 𝑘) ∈ (0...𝑁))) |
| 328 | 327 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)))) |
| 329 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → ((𝑆 D𝑛 𝐺)‘𝑗) = ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘))) |
| 330 | 329 | feq1d 6030 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → (((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ)) |
| 331 | 328, 330 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ))) |
| 332 | 326, 331,
284 | vtocl 3259 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ) |
| 333 | 211, 325,
332 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ) |
| 334 | 149 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝐷 = (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑛))) |
| 335 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑛 = ((𝑖 + 1) − 𝑘)) → 𝑛 = ((𝑖 + 1) − 𝑘)) |
| 336 | 335 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑛 = ((𝑖 + 1) − 𝑘)) → ((𝑆 D𝑛 𝐺)‘𝑛) = ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘))) |
| 337 | | fvexd 6203 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘)) ∈ V) |
| 338 | 334, 336,
325, 337 | fvmptd 6288 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘((𝑖 + 1) − 𝑘)) = ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘))) |
| 339 | 338 | feq1d 6030 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐷‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ ↔ ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ)) |
| 340 | 333, 339 | mpbird 247 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ) |
| 341 | 340 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) ∈ ℂ) |
| 342 | 242 | 3expa 1265 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((𝐶‘𝑘)‘𝑥) ∈ ℂ) |
| 343 | 341, 342 | mulcomd 10061 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥)) = (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
| 344 | 343 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) = ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 345 | 206 | peano2zd 11485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑘 + 1) ∈ ℤ) |
| 346 | 212, 214,
345 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑘 + 1) ∈
ℤ)) |
| 347 | 178 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (0...𝑖) → 0 ∈ ℝ) |
| 348 | 347, 249,
306, 216, 307 | lelttrd 10195 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (0...𝑖) → 0 < (𝑘 + 1)) |
| 349 | 347, 306,
348 | ltled 10185 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (0...𝑖) → 0 ≤ (𝑘 + 1)) |
| 350 | 349 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 0 ≤ (𝑘 + 1)) |
| 351 | 218, 305 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑘 + 1) ∈ ℝ) |
| 352 | 309 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑘 + 1) ≤ (𝑖 + 1)) |
| 353 | 351, 313,
220, 352, 318 | letrd 10194 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑘 + 1) ≤ 𝑁) |
| 354 | 346, 350,
353 | jca32 558 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ) ∧ (0
≤ (𝑘 + 1) ∧ (𝑘 + 1) ≤ 𝑁))) |
| 355 | | elfz2 12333 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 + 1) ∈ (0...𝑁) ↔ ((0 ∈ ℤ
∧ 𝑁 ∈ ℤ
∧ (𝑘 + 1) ∈
ℤ) ∧ (0 ≤ (𝑘 +
1) ∧ (𝑘 + 1) ≤ 𝑁))) |
| 356 | 354, 355 | sylibr 224 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑘 + 1) ∈ (0...𝑁)) |
| 357 | 356 | adantll 750 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑘 + 1) ∈ (0...𝑁)) |
| 358 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 + 1) ∈ V |
| 359 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = (𝑘 + 1) → (𝑗 ∈ (0...𝑁) ↔ (𝑘 + 1) ∈ (0...𝑁))) |
| 360 | 359 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑘 + 1) → ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ (𝑘 + 1) ∈ (0...𝑁)))) |
| 361 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = (𝑘 + 1) → (𝐶‘𝑗) = (𝐶‘(𝑘 + 1))) |
| 362 | 361 | feq1d 6030 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑘 + 1) → ((𝐶‘𝑗):𝑋⟶ℂ ↔ (𝐶‘(𝑘 + 1)):𝑋⟶ℂ)) |
| 363 | 360, 362 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑘 + 1) → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐶‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ (𝑘 + 1) ∈ (0...𝑁)) → (𝐶‘(𝑘 + 1)):𝑋⟶ℂ))) |
| 364 | | nfv 1843 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ (0...𝑁)) |
| 365 | | nfmpt1 4747 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 366 | 111, 365 | nfcxfr 2762 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘𝐶 |
| 367 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘𝑗 |
| 368 | 366, 367 | nffv 6198 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘(𝐶‘𝑗) |
| 369 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘𝑋 |
| 370 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘ℂ |
| 371 | 368, 369,
370 | nff 6041 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘(𝐶‘𝑗):𝑋⟶ℂ |
| 372 | 364, 371 | nfim 1825 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐶‘𝑗):𝑋⟶ℂ) |
| 373 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑗 → (𝐶‘𝑘) = (𝐶‘𝑗)) |
| 374 | 373 | feq1d 6030 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑗 → ((𝐶‘𝑘):𝑋⟶ℂ ↔ (𝐶‘𝑗):𝑋⟶ℂ)) |
| 375 | 279, 374 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐶‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐶‘𝑗):𝑋⟶ℂ))) |
| 376 | 372, 375,
238 | chvar 2262 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐶‘𝑗):𝑋⟶ℂ) |
| 377 | 358, 363,
376 | vtocl 3259 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 + 1) ∈ (0...𝑁)) → (𝐶‘(𝑘 + 1)):𝑋⟶ℂ) |
| 378 | 211, 357,
377 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐶‘(𝑘 + 1)):𝑋⟶ℂ) |
| 379 | 378 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((𝐶‘(𝑘 + 1))‘𝑥) ∈ ℂ) |
| 380 | 296 | 3expa 1265 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((𝐷‘(𝑖 − 𝑘))‘𝑥) ∈ ℂ) |
| 381 | 379, 380 | mulcld 10060 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) ∈ ℂ) |
| 382 | 341, 342 | mulcld 10060 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥)) ∈ ℂ) |
| 383 | 381, 382 | addcld 10059 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) ∈ ℂ) |
| 384 | 344, 383 | eqeltrrd 2702 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
| 385 | 299, 384 | mulcld 10060 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) ∈ ℂ) |
| 386 | 385 | 3impa 1259 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) → ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) ∈ ℂ) |
| 387 | 211, 79 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝑆 ∈ {ℝ, ℂ}) |
| 388 | 178 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → 0 ∈ ℝ) |
| 389 | 211, 86 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
| 390 | 387, 389,
209 | dvmptconst 40129 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝑖C𝑘))) = (𝑥 ∈ 𝑋 ↦ 0)) |
| 391 | 297 | 3expa 1265 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) ∈ ℂ) |
| 392 | 211, 232,
236 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐶‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 393 | 392 | eqcomd 2628 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐹)‘𝑘) = (𝐶‘𝑘)) |
| 394 | 239 | feqmptd 6249 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐶‘𝑘) = (𝑥 ∈ 𝑋 ↦ ((𝐶‘𝑘)‘𝑥))) |
| 395 | 393, 394 | eqtr2d 2657 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑥 ∈ 𝑋 ↦ ((𝐶‘𝑘)‘𝑥)) = ((𝑆 D𝑛 𝐹)‘𝑘)) |
| 396 | 395 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝐶‘𝑘)‘𝑥))) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑘))) |
| 397 | 387, 80 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝑆 ⊆ ℂ) |
| 398 | 211, 126 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝐹 ∈ (ℂ ↑pm
𝑆)) |
| 399 | | elfznn0 12433 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℕ0) |
| 400 | 399 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0) |
| 401 | | dvnp1 23688 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑘 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑘))) |
| 402 | 397, 398,
400, 401 | syl3anc 1326 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐹)‘(𝑘 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑘))) |
| 403 | 402 | eqcomd 2628 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑘)) = ((𝑆 D𝑛 𝐹)‘(𝑘 + 1))) |
| 404 | 114 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝐶 = (𝑛 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐹)‘𝑛))) |
| 405 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = (𝑘 + 1) → ((𝑆 D𝑛 𝐹)‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑘 + 1))) |
| 406 | 405 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑛 = (𝑘 + 1)) → ((𝑆 D𝑛 𝐹)‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑘 + 1))) |
| 407 | | fvexd 6203 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐹)‘(𝑘 + 1)) ∈ V) |
| 408 | 404, 406,
357, 407 | fvmptd 6288 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐶‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑘 + 1))) |
| 409 | 408 | eqcomd 2628 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐹)‘(𝑘 + 1)) = (𝐶‘(𝑘 + 1))) |
| 410 | 378 | feqmptd 6249 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐶‘(𝑘 + 1)) = (𝑥 ∈ 𝑋 ↦ ((𝐶‘(𝑘 + 1))‘𝑥))) |
| 411 | 409, 410 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐹)‘(𝑘 + 1)) = (𝑥 ∈ 𝑋 ↦ ((𝐶‘(𝑘 + 1))‘𝑥))) |
| 412 | 396, 403,
411 | 3eqtrd 2660 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝐶‘𝑘)‘𝑥))) = (𝑥 ∈ 𝑋 ↦ ((𝐶‘(𝑘 + 1))‘𝑥))) |
| 413 | 292 | eqcomd 2628 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)) = (𝐷‘(𝑖 − 𝑘))) |
| 414 | 294 | feqmptd 6249 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘(𝑖 − 𝑘)) = (𝑥 ∈ 𝑋 ↦ ((𝐷‘(𝑖 − 𝑘))‘𝑥))) |
| 415 | 413, 414 | eqtr2d 2657 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑥 ∈ 𝑋 ↦ ((𝐷‘(𝑖 − 𝑘))‘𝑥)) = ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘))) |
| 416 | 415 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = (𝑆 D ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)))) |
| 417 | 211, 157 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → 𝐺 ∈ (ℂ ↑pm
𝑆)) |
| 418 | | fznn0sub 12373 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (0...𝑖) → (𝑖 − 𝑘) ∈
ℕ0) |
| 419 | 418 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 − 𝑘) ∈
ℕ0) |
| 420 | | dvnp1 23688 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 ⊆ ℂ ∧ 𝐺 ∈ (ℂ
↑pm 𝑆) ∧ (𝑖 − 𝑘) ∈ ℕ0) → ((𝑆 D𝑛 𝐺)‘((𝑖 − 𝑘) + 1)) = (𝑆 D ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)))) |
| 421 | 397, 417,
419, 420 | syl3anc 1326 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘((𝑖 − 𝑘) + 1)) = (𝑆 D ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘)))) |
| 422 | 421 | eqcomd 2628 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D ((𝑆 D𝑛 𝐺)‘(𝑖 − 𝑘))) = ((𝑆 D𝑛 𝐺)‘((𝑖 − 𝑘) + 1))) |
| 423 | 222 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑖 ∈ ℂ) |
| 424 | | 1cnd 10056 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 1 ∈ ℂ) |
| 425 | 218 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℂ) |
| 426 | 423, 424,
425 | addsubd 10413 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1) − 𝑘) = ((𝑖 − 𝑘) + 1)) |
| 427 | 426 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 − 𝑘) + 1) = ((𝑖 + 1) − 𝑘)) |
| 428 | 427 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘((𝑖 − 𝑘) + 1)) = ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘))) |
| 429 | 428 | adantll 750 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘((𝑖 − 𝑘) + 1)) = ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘))) |
| 430 | 338 | eqcomd 2628 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘((𝑖 + 1) − 𝑘)) = (𝐷‘((𝑖 + 1) − 𝑘))) |
| 431 | 340 | feqmptd 6249 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝐷‘((𝑖 + 1) − 𝑘)) = (𝑥 ∈ 𝑋 ↦ ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
| 432 | 429, 430,
431 | 3eqtrd 2660 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑆 D𝑛 𝐺)‘((𝑖 − 𝑘) + 1)) = (𝑥 ∈ 𝑋 ↦ ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
| 433 | 416, 422,
432 | 3eqtrd 2660 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
| 434 | 387, 342,
379, 412, 380, 341, 433 | dvmptmul 23724 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))))) |
| 435 | 387, 299,
388, 390, 391, 383, 434 | dvmptmul 23724 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) = (𝑥 ∈ 𝑋 ↦ ((0 · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) · (𝑖C𝑘))))) |
| 436 | 391 | mul02d 10234 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (0 · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = 0) |
| 437 | 344 | oveq1d 6665 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) · (𝑖C𝑘)) = (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) · (𝑖C𝑘))) |
| 438 | 384, 299 | mulcomd 10061 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) · (𝑖C𝑘)) = ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 439 | 437, 438 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) · (𝑖C𝑘)) = ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 440 | 436, 439 | oveq12d 6668 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((0 · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) · (𝑖C𝑘))) = (0 + ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
| 441 | 385 | addid2d 10237 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → (0 + ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) = ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 442 | 440, 441 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((0 · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) · (𝑖C𝑘))) = ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 443 | 442 | mpteq2dva 4744 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑥 ∈ 𝑋 ↦ ((0 · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + (((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) · ((𝐶‘𝑘)‘𝑥))) · (𝑖C𝑘)))) = (𝑥 ∈ 𝑋 ↦ ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
| 444 | 435, 443 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) = (𝑥 ∈ 𝑋 ↦ ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
| 445 | 199, 200,
201, 202, 203, 298, 386, 444 | dvmptfsum 23738 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
| 446 | 209 | adantlr 751 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖C𝑘) ∈ ℂ) |
| 447 | 381 | an32s 846 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) ∈ ℂ) |
| 448 | | anass 681 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) ↔ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋))) |
| 449 | | ancom 466 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋) ↔ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝑖))) |
| 450 | 449 | anbi2i 730 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋)) ↔ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝑖)))) |
| 451 | | anass 681 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) ↔ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝑖)))) |
| 452 | 451 | bicomi 214 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝑖))) ↔ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖))) |
| 453 | 450, 452 | bitri 264 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ (𝑘 ∈ (0...𝑖) ∧ 𝑥 ∈ 𝑋)) ↔ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖))) |
| 454 | 448, 453 | bitri 264 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) ↔ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖))) |
| 455 | 454 | imbi1i 339 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((𝐶‘𝑘)‘𝑥) ∈ ℂ) ↔ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐶‘𝑘)‘𝑥) ∈ ℂ)) |
| 456 | 342, 455 | mpbi 220 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐶‘𝑘)‘𝑥) ∈ ℂ) |
| 457 | 454 | imbi1i 339 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) ∧ 𝑥 ∈ 𝑋) → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) ∈ ℂ) ↔ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) ∈ ℂ)) |
| 458 | 341, 457 | mpbi 220 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) ∈ ℂ) |
| 459 | 456, 458 | mulcld 10060 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)) ∈ ℂ) |
| 460 | 446, 447,
459 | adddid 10064 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 461 | 460 | sumeq2dv 14433 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (0...𝑖)(((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 462 | 203 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (0...𝑖) ∈ Fin) |
| 463 | 446, 447 | mulcld 10060 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) ∈ ℂ) |
| 464 | 446, 459 | mulcld 10060 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
| 465 | 462, 463,
464 | fsumadd 14470 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)(((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 466 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = ℎ → (𝑖C𝑘) = (𝑖Cℎ)) |
| 467 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = ℎ → (𝑘 + 1) = (ℎ + 1)) |
| 468 | 467 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = ℎ → (𝐶‘(𝑘 + 1)) = (𝐶‘(ℎ + 1))) |
| 469 | 468 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = ℎ → ((𝐶‘(𝑘 + 1))‘𝑥) = ((𝐶‘(ℎ + 1))‘𝑥)) |
| 470 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = ℎ → (𝑖 − 𝑘) = (𝑖 − ℎ)) |
| 471 | 470 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = ℎ → (𝐷‘(𝑖 − 𝑘)) = (𝐷‘(𝑖 − ℎ))) |
| 472 | 471 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = ℎ → ((𝐷‘(𝑖 − 𝑘))‘𝑥) = ((𝐷‘(𝑖 − ℎ))‘𝑥)) |
| 473 | 469, 472 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = ℎ → (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) = (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) |
| 474 | 466, 473 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = ℎ → ((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = ((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥)))) |
| 475 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎℎ(0...𝑖) |
| 476 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘(0...𝑖) |
| 477 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎℎ((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) |
| 478 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘(𝑖Cℎ) |
| 479 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘
· |
| 480 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘(ℎ + 1) |
| 481 | 366, 480 | nffv 6198 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘(𝐶‘(ℎ + 1)) |
| 482 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘𝑥 |
| 483 | 481, 482 | nffv 6198 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘((𝐶‘(ℎ + 1))‘𝑥) |
| 484 | | nfmpt1 4747 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘(𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑘)) |
| 485 | 146, 484 | nfcxfr 2762 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘𝐷 |
| 486 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘(𝑖 − ℎ) |
| 487 | 485, 486 | nffv 6198 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘(𝐷‘(𝑖 − ℎ)) |
| 488 | 487, 482 | nffv 6198 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘((𝐷‘(𝑖 − ℎ))‘𝑥) |
| 489 | 483, 479,
488 | nfov 6676 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘(((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥)) |
| 490 | 478, 479,
489 | nfov 6676 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) |
| 491 | 474, 475,
476, 477, 490 | cbvsum 14425 |
. . . . . . . . . . . . . . . . 17
⊢
Σ𝑘 ∈
(0...𝑖)((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = Σℎ ∈ (0...𝑖)((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) |
| 492 | 491 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = Σℎ ∈ (0...𝑖)((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥)))) |
| 493 | | 1zzd 11408 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → 1 ∈ ℤ) |
| 494 | 95 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → 0 ∈ ℤ) |
| 495 | 243 | ad2antlr 763 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑖 ∈ ℤ) |
| 496 | | nfv 1843 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) |
| 497 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘ℎ |
| 498 | 497, 476 | nfel 2777 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘 ℎ ∈ (0...𝑖) |
| 499 | 496, 498 | nfan 1828 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘(((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ ℎ ∈ (0...𝑖)) |
| 500 | 490, 370 | nfel 2777 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) ∈ ℂ |
| 501 | 499, 500 | nfim 1825 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ ℎ ∈ (0...𝑖)) → ((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) ∈ ℂ) |
| 502 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = ℎ → (𝑘 ∈ (0...𝑖) ↔ ℎ ∈ (0...𝑖))) |
| 503 | 502 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = ℎ → ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) ↔ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ ℎ ∈ (0...𝑖)))) |
| 504 | 474 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = ℎ → (((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) ∈ ℂ ↔ ((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) ∈ ℂ)) |
| 505 | 503, 504 | imbi12d 334 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = ℎ → (((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) ∈ ℂ) ↔ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ ℎ ∈ (0...𝑖)) → ((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) ∈ ℂ))) |
| 506 | 501, 505,
463 | chvar 2262 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ ℎ ∈ (0...𝑖)) → ((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) ∈ ℂ) |
| 507 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = (𝑗 − 1) → (𝑖Cℎ) = (𝑖C(𝑗 − 1))) |
| 508 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ = (𝑗 − 1) → (ℎ + 1) = ((𝑗 − 1) + 1)) |
| 509 | 508 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = (𝑗 − 1) → (𝐶‘(ℎ + 1)) = (𝐶‘((𝑗 − 1) + 1))) |
| 510 | 509 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = (𝑗 − 1) → ((𝐶‘(ℎ + 1))‘𝑥) = ((𝐶‘((𝑗 − 1) + 1))‘𝑥)) |
| 511 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ = (𝑗 − 1) → (𝑖 − ℎ) = (𝑖 − (𝑗 − 1))) |
| 512 | 511 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = (𝑗 − 1) → (𝐷‘(𝑖 − ℎ)) = (𝐷‘(𝑖 − (𝑗 − 1)))) |
| 513 | 512 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = (𝑗 − 1) → ((𝐷‘(𝑖 − ℎ))‘𝑥) = ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥)) |
| 514 | 510, 513 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = (𝑗 − 1) → (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥)) = (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) |
| 515 | 507, 514 | oveq12d 6668 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = (𝑗 − 1) → ((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) = ((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥)))) |
| 516 | 493, 494,
495, 506, 515 | fsumshft 14512 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σℎ ∈ (0...𝑖)((𝑖Cℎ) · (((𝐶‘(ℎ + 1))‘𝑥) · ((𝐷‘(𝑖 − ℎ))‘𝑥))) = Σ𝑗 ∈ ((0 + 1)...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥)))) |
| 517 | 492, 516 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = Σ𝑗 ∈ ((0 + 1)...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥)))) |
| 518 | | 0p1e1 11132 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 + 1) =
1 |
| 519 | 518 | oveq1i 6660 |
. . . . . . . . . . . . . . . . 17
⊢ ((0 +
1)...(𝑖 + 1)) = (1...(𝑖 + 1)) |
| 520 | 519 | sumeq1i 14428 |
. . . . . . . . . . . . . . . 16
⊢
Σ𝑗 ∈ ((0
+ 1)...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) = Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) |
| 521 | 520 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑗 ∈ ((0 + 1)...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) = Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥)))) |
| 522 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 𝑗 ∈ ℤ) |
| 523 | 522 | zcnd 11483 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 𝑗 ∈ ℂ) |
| 524 | | 1cnd 10056 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 1 ∈
ℂ) |
| 525 | 523, 524 | npcand 10396 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → ((𝑗 − 1) + 1) = 𝑗) |
| 526 | 525 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → (𝐶‘((𝑗 − 1) + 1)) = (𝐶‘𝑗)) |
| 527 | 526 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → ((𝐶‘((𝑗 − 1) + 1))‘𝑥) = ((𝐶‘𝑗)‘𝑥)) |
| 528 | 527 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝐶‘((𝑗 − 1) + 1))‘𝑥) = ((𝐶‘𝑗)‘𝑥)) |
| 529 | 221 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℂ) |
| 530 | 529 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑖 ∈ ℂ) |
| 531 | 523 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ∈ ℂ) |
| 532 | 524 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 1 ∈
ℂ) |
| 533 | 530, 531,
532 | subsub3d 10422 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖 − (𝑗 − 1)) = ((𝑖 + 1) − 𝑗)) |
| 534 | 533 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝐷‘(𝑖 − (𝑗 − 1))) = (𝐷‘((𝑖 + 1) − 𝑗))) |
| 535 | 534 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥) = ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)) |
| 536 | 528, 535 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥)) = (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) |
| 537 | 536 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) = ((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) |
| 538 | 537 | sumeq2dv 14433 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (0..^𝑁) → Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) = Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) |
| 539 | 538 | ad2antlr 763 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) = Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) |
| 540 | | nfv 1843 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑗((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) |
| 541 | | nfcv 2764 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑗((𝑖C((𝑖 + 1) − 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) |
| 542 | | fzfid 12772 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (1...(𝑖 + 1)) ∈ Fin) |
| 543 | 192 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑖 ∈ ℕ0) |
| 544 | 522 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ∈ ℤ) |
| 545 | | 1zzd 11408 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 1 ∈
ℤ) |
| 546 | 544, 545 | zsubcld 11487 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑗 − 1) ∈ ℤ) |
| 547 | 543, 546 | bccld 39531 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖C(𝑗 − 1)) ∈
ℕ0) |
| 548 | 547 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖C(𝑗 − 1)) ∈ ℂ) |
| 549 | 548 | adantll 750 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖C(𝑗 − 1)) ∈ ℂ) |
| 550 | 549 | adantlr 751 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖C(𝑗 − 1)) ∈ ℂ) |
| 551 | 1 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝜑) |
| 552 | | 0zd 11389 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 0 ∈
ℤ) |
| 553 | 213 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑁 ∈ ℤ) |
| 554 | 552, 553,
544 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑗 ∈
ℤ)) |
| 555 | 178 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 0 ∈
ℝ) |
| 556 | 522 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 𝑗 ∈ ℝ) |
| 557 | | 1red 10055 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 1 ∈
ℝ) |
| 558 | | 0lt1 10550 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 0 <
1 |
| 559 | 558 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 0 < 1) |
| 560 | | elfzle1 12344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 1 ≤ 𝑗) |
| 561 | 555, 557,
556, 559, 560 | ltletrd 10197 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 0 < 𝑗) |
| 562 | 555, 556,
561 | ltled 10185 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 0 ≤ 𝑗) |
| 563 | 562 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 0 ≤ 𝑗) |
| 564 | 556 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ∈ ℝ) |
| 565 | 221 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑖 ∈ ℝ) |
| 566 | | 1red 10055 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 1 ∈
ℝ) |
| 567 | 565, 566 | readdcld 10069 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖 + 1) ∈ ℝ) |
| 568 | 219 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑁 ∈ ℝ) |
| 569 | | elfzle2 12345 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 𝑗 ≤ (𝑖 + 1)) |
| 570 | 569 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ≤ (𝑖 + 1)) |
| 571 | 317 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖 + 1) ≤ 𝑁) |
| 572 | 564, 567,
568, 570, 571 | letrd 10194 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ≤ 𝑁) |
| 573 | 554, 563,
572 | jca32 558 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (0 ≤
𝑗 ∧ 𝑗 ≤ 𝑁))) |
| 574 | | elfz2 12333 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (0...𝑁) ↔ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (0 ≤
𝑗 ∧ 𝑗 ≤ 𝑁))) |
| 575 | 573, 574 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ∈ (0...𝑁)) |
| 576 | 575 | adantll 750 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ∈ (0...𝑁)) |
| 577 | 551, 576,
376 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝐶‘𝑗):𝑋⟶ℂ) |
| 578 | 577 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝐶‘𝑗):𝑋⟶ℂ) |
| 579 | | simplr 792 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑥 ∈ 𝑋) |
| 580 | 578, 579 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝐶‘𝑗)‘𝑥) ∈ ℂ) |
| 581 | 243 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑖 ∈ ℤ) |
| 582 | 581 | peano2zd 11485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝑖 + 1) ∈ ℤ) |
| 583 | 582, 544 | zsubcld 11487 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) ∈ ℤ) |
| 584 | 552, 553,
583 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝑖 + 1) − 𝑗) ∈ ℤ)) |
| 585 | 567, 564 | subge0d 10617 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (0 ≤ ((𝑖 + 1) − 𝑗) ↔ 𝑗 ≤ (𝑖 + 1))) |
| 586 | 570, 585 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 0 ≤ ((𝑖 + 1) − 𝑗)) |
| 587 | 567, 564 | resubcld 10458 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) ∈ ℝ) |
| 588 | 587 | leidd 10594 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) ≤ ((𝑖 + 1) − 𝑗)) |
| 589 | 556, 561 | elrpd 11869 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 ∈ (1...(𝑖 + 1)) → 𝑗 ∈ ℝ+) |
| 590 | 589 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → 𝑗 ∈ ℝ+) |
| 591 | 567, 590 | ltsubrpd 11904 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) < (𝑖 + 1)) |
| 592 | 587, 567,
568, 591, 571 | ltletrd 10197 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) < 𝑁) |
| 593 | 587, 587,
568, 588, 592 | lelttrd 10195 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) < 𝑁) |
| 594 | 587, 568,
593 | ltled 10185 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) ≤ 𝑁) |
| 595 | 584, 586,
594 | jca32 558 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝑖 + 1) − 𝑗) ∈ ℤ) ∧ (0 ≤ ((𝑖 + 1) − 𝑗) ∧ ((𝑖 + 1) − 𝑗) ≤ 𝑁))) |
| 596 | | elfz2 12333 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑖 + 1) − 𝑗) ∈ (0...𝑁) ↔ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝑖 + 1) − 𝑗) ∈ ℤ) ∧ (0 ≤ ((𝑖 + 1) − 𝑗) ∧ ((𝑖 + 1) − 𝑗) ≤ 𝑁))) |
| 597 | 595, 596 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) ∈ (0...𝑁)) |
| 598 | 597 | adantll 750 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖 + 1) − 𝑗) ∈ (0...𝑁)) |
| 599 | | nfv 1843 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝜑 ∧ ((𝑖 + 1) − 𝑗) ∈ (0...𝑁)) |
| 600 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑘((𝑖 + 1) − 𝑗) |
| 601 | 485, 600 | nffv 6198 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘(𝐷‘((𝑖 + 1) − 𝑗)) |
| 602 | 601, 369,
370 | nff 6041 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝐷‘((𝑖 + 1) − 𝑗)):𝑋⟶ℂ |
| 603 | 599, 602 | nfim 1825 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘((𝜑 ∧ ((𝑖 + 1) − 𝑗) ∈ (0...𝑁)) → (𝐷‘((𝑖 + 1) − 𝑗)):𝑋⟶ℂ) |
| 604 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 + 1) − 𝑗) ∈ V |
| 605 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = ((𝑖 + 1) − 𝑗) → (𝑘 ∈ (0...𝑁) ↔ ((𝑖 + 1) − 𝑗) ∈ (0...𝑁))) |
| 606 | 605 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = ((𝑖 + 1) − 𝑗) → ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ↔ (𝜑 ∧ ((𝑖 + 1) − 𝑗) ∈ (0...𝑁)))) |
| 607 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = ((𝑖 + 1) − 𝑗) → (𝐷‘𝑘) = (𝐷‘((𝑖 + 1) − 𝑗))) |
| 608 | 607 | feq1d 6030 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = ((𝑖 + 1) − 𝑗) → ((𝐷‘𝑘):𝑋⟶ℂ ↔ (𝐷‘((𝑖 + 1) − 𝑗)):𝑋⟶ℂ)) |
| 609 | 606, 608 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = ((𝑖 + 1) − 𝑗) → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ ((𝑖 + 1) − 𝑗) ∈ (0...𝑁)) → (𝐷‘((𝑖 + 1) − 𝑗)):𝑋⟶ℂ))) |
| 610 | 146 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝐷 = (𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑘))) |
| 611 | | fvexd 6203 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑘) ∈ V) |
| 612 | 610, 611 | fvmpt2d 6293 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘𝑘) = ((𝑆 D𝑛 𝐺)‘𝑘)) |
| 613 | 612 | feq1d 6030 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝐷‘𝑘):𝑋⟶ℂ ↔ ((𝑆 D𝑛 𝐺)‘𝑘):𝑋⟶ℂ)) |
| 614 | 283, 613 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘𝑘):𝑋⟶ℂ) |
| 615 | 603, 604,
609, 614 | vtoclf 3258 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑖 + 1) − 𝑗) ∈ (0...𝑁)) → (𝐷‘((𝑖 + 1) − 𝑗)):𝑋⟶ℂ) |
| 616 | 551, 598,
615 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝐷‘((𝑖 + 1) − 𝑗)):𝑋⟶ℂ) |
| 617 | 616 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (𝐷‘((𝑖 + 1) − 𝑗)):𝑋⟶ℂ) |
| 618 | 617, 579 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥) ∈ ℂ) |
| 619 | 580, 618 | mulcld 10060 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)) ∈ ℂ) |
| 620 | 550, 619 | mulcld 10060 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...(𝑖 + 1))) → ((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) ∈ ℂ) |
| 621 | | 1zzd 11408 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → 1 ∈ ℤ) |
| 622 | 243 | peano2zd 11485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ ℤ) |
| 623 | 518 | eqcomi 2631 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 = (0 +
1) |
| 624 | 623 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0..^𝑁) → 1 = (0 + 1)) |
| 625 | 178 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0..^𝑁) → 0 ∈ ℝ) |
| 626 | | 1red 10055 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0..^𝑁) → 1 ∈ ℝ) |
| 627 | 192 | nn0ge0d 11354 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0..^𝑁) → 0 ≤ 𝑖) |
| 628 | 625, 221,
626, 627 | leadd1dd 10641 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0..^𝑁) → (0 + 1) ≤ (𝑖 + 1)) |
| 629 | 624, 628 | eqbrtrd 4675 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → 1 ≤ (𝑖 + 1)) |
| 630 | 621, 622,
629 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → (1 ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ ∧ 1
≤ (𝑖 +
1))) |
| 631 | | eluz2 11693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 + 1) ∈
(ℤ≥‘1) ↔ (1 ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ ∧ 1
≤ (𝑖 +
1))) |
| 632 | 630, 631 | sylibr 224 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈
(ℤ≥‘1)) |
| 633 | | eluzfz2 12349 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 + 1) ∈
(ℤ≥‘1) → (𝑖 + 1) ∈ (1...(𝑖 + 1))) |
| 634 | 632, 633 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (1...(𝑖 + 1))) |
| 635 | 634 | ad2antlr 763 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (𝑖 + 1) ∈ (1...(𝑖 + 1))) |
| 636 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑖 + 1) → (𝑗 − 1) = ((𝑖 + 1) − 1)) |
| 637 | 636 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (𝑖 + 1) → (𝑖C(𝑗 − 1)) = (𝑖C((𝑖 + 1) − 1))) |
| 638 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑖 + 1) → (𝐶‘𝑗) = (𝐶‘(𝑖 + 1))) |
| 639 | 638 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑖 + 1) → ((𝐶‘𝑗)‘𝑥) = ((𝐶‘(𝑖 + 1))‘𝑥)) |
| 640 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = (𝑖 + 1) → ((𝑖 + 1) − 𝑗) = ((𝑖 + 1) − (𝑖 + 1))) |
| 641 | 640 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑖 + 1) → (𝐷‘((𝑖 + 1) − 𝑗)) = (𝐷‘((𝑖 + 1) − (𝑖 + 1)))) |
| 642 | 641 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑖 + 1) → ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥) = ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)) |
| 643 | 639, 642 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (𝑖 + 1) → (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)) = (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) |
| 644 | 637, 643 | oveq12d 6668 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = (𝑖 + 1) → ((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) = ((𝑖C((𝑖 + 1) − 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)))) |
| 645 | 540, 541,
542, 620, 635, 644 | fsumsplit1 39804 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) = (((𝑖C((𝑖 + 1) − 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) + Σ𝑗 ∈ ((1...(𝑖 + 1)) ∖ {(𝑖 + 1)})((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))))) |
| 646 | | 1cnd 10056 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0..^𝑁) → 1 ∈ ℂ) |
| 647 | 529, 646 | pncand 10393 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖 + 1) − 1) = 𝑖) |
| 648 | 647 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖C((𝑖 + 1) − 1)) = (𝑖C𝑖)) |
| 649 | | bcnn 13099 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ ℕ0
→ (𝑖C𝑖) = 1) |
| 650 | 192, 649 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖C𝑖) = 1) |
| 651 | 648, 650 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖C((𝑖 + 1) − 1)) = 1) |
| 652 | 529, 646 | addcld 10059 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ ℂ) |
| 653 | 652 | subidd 10380 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖 + 1) − (𝑖 + 1)) = 0) |
| 654 | 653 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0..^𝑁) → (𝐷‘((𝑖 + 1) − (𝑖 + 1))) = (𝐷‘0)) |
| 655 | 654 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥) = ((𝐷‘0)‘𝑥)) |
| 656 | 655 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)) = (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥))) |
| 657 | 651, 656 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖C((𝑖 + 1) − 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) = (1 · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)))) |
| 658 | 657 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝑖C((𝑖 + 1) − 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) = (1 · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)))) |
| 659 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝜑) |
| 660 | | fzofzp1 12565 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0...𝑁)) |
| 661 | 660 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0...𝑁)) |
| 662 | | nfv 1843 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)) |
| 663 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑘(𝑖 + 1) |
| 664 | 366, 663 | nffv 6198 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘(𝐶‘(𝑖 + 1)) |
| 665 | 664, 369,
370 | nff 6041 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝐶‘(𝑖 + 1)):𝑋⟶ℂ |
| 666 | 662, 665 | nfim 1825 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘((𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)) → (𝐶‘(𝑖 + 1)):𝑋⟶ℂ) |
| 667 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 + 1) ∈ V |
| 668 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = (𝑖 + 1) → (𝑘 ∈ (0...𝑁) ↔ (𝑖 + 1) ∈ (0...𝑁))) |
| 669 | 668 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = (𝑖 + 1) → ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ↔ (𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)))) |
| 670 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = (𝑖 + 1) → (𝐶‘𝑘) = (𝐶‘(𝑖 + 1))) |
| 671 | 670 | feq1d 6030 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = (𝑖 + 1) → ((𝐶‘𝑘):𝑋⟶ℂ ↔ (𝐶‘(𝑖 + 1)):𝑋⟶ℂ)) |
| 672 | 669, 671 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = (𝑖 + 1) → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐶‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)) → (𝐶‘(𝑖 + 1)):𝑋⟶ℂ))) |
| 673 | 666, 667,
672, 238 | vtoclf 3258 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)) → (𝐶‘(𝑖 + 1)):𝑋⟶ℂ) |
| 674 | 659, 661,
673 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝐶‘(𝑖 + 1)):𝑋⟶ℂ) |
| 675 | 674 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝐶‘(𝑖 + 1))‘𝑥) ∈ ℂ) |
| 676 | | nfv 1843 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘(𝜑 ∧ 0 ∈ (0...𝑁)) |
| 677 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
Ⅎ𝑘0 |
| 678 | 485, 677 | nffv 6198 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑘(𝐷‘0) |
| 679 | 678, 369,
370 | nff 6041 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘(𝐷‘0):𝑋⟶ℂ |
| 680 | 676, 679 | nfim 1825 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝐷‘0):𝑋⟶ℂ) |
| 681 | | c0ex 10034 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 0 ∈
V |
| 682 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 = 0 → (𝑘 ∈ (0...𝑁) ↔ 0 ∈ (0...𝑁))) |
| 683 | 682 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 0 → ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ↔ (𝜑 ∧ 0 ∈ (0...𝑁)))) |
| 684 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 = 0 → (𝐷‘𝑘) = (𝐷‘0)) |
| 685 | 684 | feq1d 6030 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 0 → ((𝐷‘𝑘):𝑋⟶ℂ ↔ (𝐷‘0):𝑋⟶ℂ)) |
| 686 | 683, 685 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 0 → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝐷‘0):𝑋⟶ℂ))) |
| 687 | 680, 681,
686, 614 | vtoclf 3258 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝐷‘0):𝑋⟶ℂ) |
| 688 | 1, 119, 687 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐷‘0):𝑋⟶ℂ) |
| 689 | 688 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝐷‘0):𝑋⟶ℂ) |
| 690 | 689 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝐷‘0)‘𝑥) ∈ ℂ) |
| 691 | 675, 690 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) ∈ ℂ) |
| 692 | 691 | mulid2d 10058 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (1 · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥))) = (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥))) |
| 693 | 658, 692 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝑖C((𝑖 + 1) − 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) = (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥))) |
| 694 | | 1m1e0 11089 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (1
− 1) = 0 |
| 695 | 694 | fveq2i 6194 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(ℤ≥‘(1 − 1)) =
(ℤ≥‘0) |
| 696 | 3 | eqcomi 2631 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(ℤ≥‘0) = ℕ0 |
| 697 | 695, 696 | eqtr2i 2645 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
ℕ0 = (ℤ≥‘(1 −
1)) |
| 698 | 697 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0..^𝑁) → ℕ0 =
(ℤ≥‘(1 − 1))) |
| 699 | 192, 698 | eleqtrd 2703 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (ℤ≥‘(1
− 1))) |
| 700 | | fzdifsuc2 39525 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈
(ℤ≥‘(1 − 1)) → (1...𝑖) = ((1...(𝑖 + 1)) ∖ {(𝑖 + 1)})) |
| 701 | 699, 700 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → (1...𝑖) = ((1...(𝑖 + 1)) ∖ {(𝑖 + 1)})) |
| 702 | 701 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → ((1...(𝑖 + 1)) ∖ {(𝑖 + 1)}) = (1...𝑖)) |
| 703 | 702 | sumeq1d 14431 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → Σ𝑗 ∈ ((1...(𝑖 + 1)) ∖ {(𝑖 + 1)})((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) = Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) |
| 704 | 703 | ad2antlr 763 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑗 ∈ ((1...(𝑖 + 1)) ∖ {(𝑖 + 1)})((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) = Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) |
| 705 | 693, 704 | oveq12d 6668 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝑖C((𝑖 + 1) − 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) + Σ𝑗 ∈ ((1...(𝑖 + 1)) ∖ {(𝑖 + 1)})((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) = ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))))) |
| 706 | 539, 645,
705 | 3eqtrd 2660 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑗 ∈ (1...(𝑖 + 1))((𝑖C(𝑗 − 1)) · (((𝐶‘((𝑗 − 1) + 1))‘𝑥) · ((𝐷‘(𝑖 − (𝑗 − 1)))‘𝑥))) = ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))))) |
| 707 | 517, 521,
706 | 3eqtrd 2660 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) = ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))))) |
| 708 | | nfcv 2764 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(𝑖C0) |
| 709 | 366, 677 | nffv 6198 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘(𝐶‘0) |
| 710 | 709, 482 | nffv 6198 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘((𝐶‘0)‘𝑥) |
| 711 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘((𝑖 + 1) − 0) |
| 712 | 485, 711 | nffv 6198 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘(𝐷‘((𝑖 + 1) − 0)) |
| 713 | 712, 482 | nffv 6198 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘((𝐷‘((𝑖 + 1) − 0))‘𝑥) |
| 714 | 710, 479,
713 | nfov 6676 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥)) |
| 715 | 708, 479,
714 | nfov 6676 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) |
| 716 | 696 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → (ℤ≥‘0) =
ℕ0) |
| 717 | 192, 716 | eleqtrrd 2704 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈
(ℤ≥‘0)) |
| 718 | | eluzfz1 12348 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑖)) |
| 719 | 717, 718 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (0..^𝑁) → 0 ∈ (0...𝑖)) |
| 720 | 719 | ad2antlr 763 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → 0 ∈ (0...𝑖)) |
| 721 | | oveq2 6658 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (𝑖C𝑘) = (𝑖C0)) |
| 722 | 109 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 0 → ((𝐶‘𝑘)‘𝑥) = ((𝐶‘0)‘𝑥)) |
| 723 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 0 → ((𝑖 + 1) − 𝑘) = ((𝑖 + 1) − 0)) |
| 724 | 723 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (𝐷‘((𝑖 + 1) − 𝑘)) = (𝐷‘((𝑖 + 1) − 0))) |
| 725 | 724 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 0 → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) = ((𝐷‘((𝑖 + 1) − 0))‘𝑥)) |
| 726 | 722, 725 | oveq12d 6668 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)) = (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) |
| 727 | 721, 726 | oveq12d 6668 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = ((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥)))) |
| 728 | 496, 715,
462, 464, 720, 727 | fsumsplit1 39804 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = (((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 729 | 652 | subid1d 10381 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖 + 1) − 0) = (𝑖 + 1)) |
| 730 | 729 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → (𝐷‘((𝑖 + 1) − 0)) = (𝐷‘(𝑖 + 1))) |
| 731 | 730 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → ((𝐷‘((𝑖 + 1) − 0))‘𝑥) = ((𝐷‘(𝑖 + 1))‘𝑥)) |
| 732 | 731 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥)) = (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) |
| 733 | 732 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) = ((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)))) |
| 734 | 733 | oveq1d 6665 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (0..^𝑁) → (((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 735 | 734 | ad2antlr 763 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 736 | | bcn0 13097 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ ℕ0
→ (𝑖C0) =
1) |
| 737 | 192, 736 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖C0) = 1) |
| 738 | 737 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) = (1 · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)))) |
| 739 | 738 | ad2antlr 763 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) = (1 · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)))) |
| 740 | 709, 369,
370 | nff 6041 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝐶‘0):𝑋⟶ℂ |
| 741 | 676, 740 | nfim 1825 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝐶‘0):𝑋⟶ℂ) |
| 742 | 109 | feq1d 6030 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 0 → ((𝐶‘𝑘):𝑋⟶ℂ ↔ (𝐶‘0):𝑋⟶ℂ)) |
| 743 | 683, 742 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 0 → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐶‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝐶‘0):𝑋⟶ℂ))) |
| 744 | 741, 681,
743, 238 | vtoclf 3258 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝐶‘0):𝑋⟶ℂ) |
| 745 | 1, 119, 744 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐶‘0):𝑋⟶ℂ) |
| 746 | 745 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝐶‘0):𝑋⟶ℂ) |
| 747 | 746 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝐶‘0)‘𝑥) ∈ ℂ) |
| 748 | 485, 663 | nffv 6198 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝐷‘(𝑖 + 1)) |
| 749 | 748, 369,
370 | nff 6041 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘(𝐷‘(𝑖 + 1)):𝑋⟶ℂ |
| 750 | 662, 749 | nfim 1825 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘((𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)) → (𝐷‘(𝑖 + 1)):𝑋⟶ℂ) |
| 751 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = (𝑖 + 1) → (𝐷‘𝑘) = (𝐷‘(𝑖 + 1))) |
| 752 | 751 | feq1d 6030 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = (𝑖 + 1) → ((𝐷‘𝑘):𝑋⟶ℂ ↔ (𝐷‘(𝑖 + 1)):𝑋⟶ℂ)) |
| 753 | 669, 752 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = (𝑖 + 1) → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)) → (𝐷‘(𝑖 + 1)):𝑋⟶ℂ))) |
| 754 | 750, 667,
753, 614 | vtoclf 3258 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑖 + 1) ∈ (0...𝑁)) → (𝐷‘(𝑖 + 1)):𝑋⟶ℂ) |
| 755 | 659, 661,
754 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝐷‘(𝑖 + 1)):𝑋⟶ℂ) |
| 756 | 755 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝐷‘(𝑖 + 1))‘𝑥) ∈ ℂ) |
| 757 | 747, 756 | mulcld 10060 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) ∈ ℂ) |
| 758 | 757 | mulid2d 10058 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (1 · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) = (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) |
| 759 | 739, 758 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) = (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) |
| 760 | | nfv 1843 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑗 𝑖 ∈ (0..^𝑁) |
| 761 | | 1zzd 11408 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ ((0...𝑖) ∖ {0})) → 1 ∈
ℤ) |
| 762 | 243 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ ((0...𝑖) ∖ {0})) → 𝑖 ∈ ℤ) |
| 763 | | eldifi 3732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → 𝑗 ∈ (0...𝑖)) |
| 764 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (0...𝑖) → 𝑗 ∈ ℤ) |
| 765 | 763, 764 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → 𝑗 ∈ ℤ) |
| 766 | 765 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ ((0...𝑖) ∖ {0})) → 𝑗 ∈ ℤ) |
| 767 | 761, 762,
766 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ ((0...𝑖) ∖ {0})) → (1 ∈ ℤ
∧ 𝑖 ∈ ℤ
∧ 𝑗 ∈
ℤ)) |
| 768 | | elfznn0 12433 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (0...𝑖) → 𝑗 ∈ ℕ0) |
| 769 | 763, 768 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → 𝑗 ∈ ℕ0) |
| 770 | | eldifsni 4320 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → 𝑗 ≠ 0) |
| 771 | 769, 770 | jca 554 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → (𝑗 ∈ ℕ0 ∧ 𝑗 ≠ 0)) |
| 772 | | elnnne0 11306 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ ℕ ↔ (𝑗 ∈ ℕ0
∧ 𝑗 ≠
0)) |
| 773 | 771, 772 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → 𝑗 ∈ ℕ) |
| 774 | | nnge1 11046 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ ℕ → 1 ≤
𝑗) |
| 775 | 773, 774 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → 1 ≤ 𝑗) |
| 776 | 775 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ ((0...𝑖) ∖ {0})) → 1 ≤ 𝑗) |
| 777 | | elfzle2 12345 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (0...𝑖) → 𝑗 ≤ 𝑖) |
| 778 | 763, 777 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ ((0...𝑖) ∖ {0}) → 𝑗 ≤ 𝑖) |
| 779 | 778 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ ((0...𝑖) ∖ {0})) → 𝑗 ≤ 𝑖) |
| 780 | 767, 776,
779 | jca32 558 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ ((0...𝑖) ∖ {0})) → ((1 ∈ ℤ
∧ 𝑖 ∈ ℤ
∧ 𝑗 ∈ ℤ)
∧ (1 ≤ 𝑗 ∧ 𝑗 ≤ 𝑖))) |
| 781 | | elfz2 12333 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ (1...𝑖) ↔ ((1 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (1 ≤
𝑗 ∧ 𝑗 ≤ 𝑖))) |
| 782 | 780, 781 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ ((0...𝑖) ∖ {0})) → 𝑗 ∈ (1...𝑖)) |
| 783 | 782 | ex 450 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → (𝑗 ∈ ((0...𝑖) ∖ {0}) → 𝑗 ∈ (1...𝑖))) |
| 784 | | 0zd 11389 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (1...𝑖) → 0 ∈ ℤ) |
| 785 | | elfzel2 12340 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (1...𝑖) → 𝑖 ∈ ℤ) |
| 786 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (1...𝑖) → 𝑗 ∈ ℤ) |
| 787 | 784, 785,
786 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (1...𝑖) → (0 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 𝑗 ∈
ℤ)) |
| 788 | 178 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (1...𝑖) → 0 ∈ ℝ) |
| 789 | 786 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (1...𝑖) → 𝑗 ∈ ℝ) |
| 790 | | 1red 10055 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (1...𝑖) → 1 ∈ ℝ) |
| 791 | 558 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (1...𝑖) → 0 < 1) |
| 792 | | elfzle1 12344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (1...𝑖) → 1 ≤ 𝑗) |
| 793 | 788, 790,
789, 791, 792 | ltletrd 10197 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (1...𝑖) → 0 < 𝑗) |
| 794 | 788, 789,
793 | ltled 10185 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (1...𝑖) → 0 ≤ 𝑗) |
| 795 | | elfzle2 12345 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (1...𝑖) → 𝑗 ≤ 𝑖) |
| 796 | 787, 794,
795 | jca32 558 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (1...𝑖) → ((0 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (0 ≤
𝑗 ∧ 𝑗 ≤ 𝑖))) |
| 797 | | elfz2 12333 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (0...𝑖) ↔ ((0 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (0 ≤
𝑗 ∧ 𝑗 ≤ 𝑖))) |
| 798 | 796, 797 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (1...𝑖) → 𝑗 ∈ (0...𝑖)) |
| 799 | 788, 793 | gtned 10172 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (1...𝑖) → 𝑗 ≠ 0) |
| 800 | | nelsn 4212 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ≠ 0 → ¬ 𝑗 ∈ {0}) |
| 801 | 799, 800 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (1...𝑖) → ¬ 𝑗 ∈ {0}) |
| 802 | 798, 801 | eldifd 3585 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ (1...𝑖) → 𝑗 ∈ ((0...𝑖) ∖ {0})) |
| 803 | 802 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...𝑖)) → 𝑗 ∈ ((0...𝑖) ∖ {0})) |
| 804 | 803 | ex 450 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → (𝑗 ∈ (1...𝑖) → 𝑗 ∈ ((0...𝑖) ∖ {0}))) |
| 805 | 783, 804 | impbid 202 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → (𝑗 ∈ ((0...𝑖) ∖ {0}) ↔ 𝑗 ∈ (1...𝑖))) |
| 806 | 760, 805 | alrimi 2082 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → ∀𝑗(𝑗 ∈ ((0...𝑖) ∖ {0}) ↔ 𝑗 ∈ (1...𝑖))) |
| 807 | | dfcleq 2616 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((0...𝑖) ∖
{0}) = (1...𝑖) ↔
∀𝑗(𝑗 ∈ ((0...𝑖) ∖ {0}) ↔ 𝑗 ∈ (1...𝑖))) |
| 808 | 806, 807 | sylibr 224 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → ((0...𝑖) ∖ {0}) = (1...𝑖)) |
| 809 | 808 | sumeq1d 14431 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (0..^𝑁) → Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 810 | 809 | ad2antlr 763 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 811 | 759, 810 | oveq12d 6668 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝑖C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 812 | 728, 735,
811 | 3eqtrd 2660 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 813 | 707, 812 | oveq12d 6668 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) + ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
| 814 | | fzfid 12772 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (1...𝑖) ∈ Fin) |
| 815 | 192 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...𝑖)) → 𝑖 ∈ ℕ0) |
| 816 | 803, 765 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...𝑖)) → 𝑗 ∈ ℤ) |
| 817 | | 1zzd 11408 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...𝑖)) → 1 ∈ ℤ) |
| 818 | 816, 817 | zsubcld 11487 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...𝑖)) → (𝑗 − 1) ∈ ℤ) |
| 819 | 815, 818 | bccld 39531 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...𝑖)) → (𝑖C(𝑗 − 1)) ∈
ℕ0) |
| 820 | 819 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑗 ∈ (1...𝑖)) → (𝑖C(𝑗 − 1)) ∈ ℂ) |
| 821 | 820 | adantll 750 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑗 ∈ (1...𝑖)) → (𝑖C(𝑗 − 1)) ∈ ℂ) |
| 822 | 821 | adantlr 751 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...𝑖)) → (𝑖C(𝑗 − 1)) ∈ ℂ) |
| 823 | | simpl 473 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...𝑖)) → ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋)) |
| 824 | | fzelp1 12393 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (1...𝑖) → 𝑗 ∈ (1...(𝑖 + 1))) |
| 825 | 824 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...𝑖)) → 𝑗 ∈ (1...(𝑖 + 1))) |
| 826 | 823, 825,
580 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...𝑖)) → ((𝐶‘𝑗)‘𝑥) ∈ ℂ) |
| 827 | 825, 618 | syldan 487 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...𝑖)) → ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥) ∈ ℂ) |
| 828 | 826, 827 | mulcld 10060 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...𝑖)) → (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)) ∈ ℂ) |
| 829 | 822, 828 | mulcld 10060 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ (1...𝑖)) → ((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) ∈ ℂ) |
| 830 | 814, 829 | fsumcl 14464 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) ∈ ℂ) |
| 831 | 192 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → 𝑖 ∈ ℕ0) |
| 832 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ (1...𝑖) → 𝑘 ∈ ℤ) |
| 833 | 832 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → 𝑘 ∈ ℤ) |
| 834 | 831, 833 | bccld 39531 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C𝑘) ∈
ℕ0) |
| 835 | 834 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C𝑘) ∈ ℂ) |
| 836 | 835 | adantll 750 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C𝑘) ∈ ℂ) |
| 837 | 836 | adantlr 751 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C𝑘) ∈ ℂ) |
| 838 | | simpll 790 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (𝜑 ∧ 𝑖 ∈ (0..^𝑁))) |
| 839 | | simplr 792 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → 𝑥 ∈ 𝑋) |
| 840 | 798 | ssriv 3607 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(1...𝑖) ⊆
(0...𝑖) |
| 841 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (1...𝑖) → 𝑘 ∈ (1...𝑖)) |
| 842 | 840, 841 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (1...𝑖) → 𝑘 ∈ (0...𝑖)) |
| 843 | 842 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → 𝑘 ∈ (0...𝑖)) |
| 844 | 838, 839,
843, 456 | syl21anc 1325 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → ((𝐶‘𝑘)‘𝑥) ∈ ℂ) |
| 845 | 843, 458 | syldan 487 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) ∈ ℂ) |
| 846 | 844, 845 | mulcld 10060 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)) ∈ ℂ) |
| 847 | 837, 846 | mulcld 10060 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
| 848 | 814, 847 | fsumcl 14464 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
| 849 | 691, 830,
757, 848 | add4d 10264 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)))) + ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) = (((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + (Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
| 850 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑘 → (𝑗 − 1) = (𝑘 − 1)) |
| 851 | 850 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑘 → (𝑖C(𝑗 − 1)) = (𝑖C(𝑘 − 1))) |
| 852 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 𝑘 → (𝐶‘𝑗) = (𝐶‘𝑘)) |
| 853 | 852 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑘 → ((𝐶‘𝑗)‘𝑥) = ((𝐶‘𝑘)‘𝑥)) |
| 854 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = 𝑘 → ((𝑖 + 1) − 𝑗) = ((𝑖 + 1) − 𝑘)) |
| 855 | 854 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 𝑘 → (𝐷‘((𝑖 + 1) − 𝑗)) = (𝐷‘((𝑖 + 1) − 𝑘))) |
| 856 | 855 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑘 → ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥) = ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)) |
| 857 | 853, 856 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑘 → (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)) = (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
| 858 | 851, 857 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑘 → ((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) = ((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 859 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘(1...𝑖) |
| 860 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗(1...𝑖) |
| 861 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘(𝑖C(𝑗 − 1)) |
| 862 | 368, 482 | nffv 6198 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘((𝐶‘𝑗)‘𝑥) |
| 863 | 601, 482 | nffv 6198 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥) |
| 864 | 862, 479,
863 | nfov 6676 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘(((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥)) |
| 865 | 861, 479,
864 | nfov 6676 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) |
| 866 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
| 867 | 858, 859,
860, 865, 866 | cbvsum 14425 |
. . . . . . . . . . . . . . . . . 18
⊢
Σ𝑗 ∈
(1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) = Σ𝑘 ∈ (1...𝑖)((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) |
| 868 | 867 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) = Σ𝑘 ∈ (1...𝑖)((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 869 | 868 | oveq1d 6665 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (Σ𝑘 ∈ (1...𝑖)((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 870 | | peano2zm 11420 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ ℤ → (𝑘 − 1) ∈
ℤ) |
| 871 | 833, 870 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → (𝑘 − 1) ∈ ℤ) |
| 872 | 831, 871 | bccld 39531 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C(𝑘 − 1)) ∈
ℕ0) |
| 873 | 872 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C(𝑘 − 1)) ∈ ℂ) |
| 874 | 873 | adantll 750 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C(𝑘 − 1)) ∈ ℂ) |
| 875 | 874 | adantlr 751 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖C(𝑘 − 1)) ∈ ℂ) |
| 876 | 875, 846 | mulcld 10060 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
| 877 | 814, 876,
847 | fsumadd 14470 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (1...𝑖)(((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (Σ𝑘 ∈ (1...𝑖)((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 878 | 877 | eqcomd 2628 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (Σ𝑘 ∈ (1...𝑖)((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (1...𝑖)(((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 879 | 873, 835 | addcomd 10238 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖C(𝑘 − 1)) + (𝑖C𝑘)) = ((𝑖C𝑘) + (𝑖C(𝑘 − 1)))) |
| 880 | | bcpasc 13108 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ ((𝑖C𝑘) + (𝑖C(𝑘 − 1))) = ((𝑖 + 1)C𝑘)) |
| 881 | 831, 833,
880 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖C𝑘) + (𝑖C(𝑘 − 1))) = ((𝑖 + 1)C𝑘)) |
| 882 | 879, 881 | eqtr2d 2657 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖 + 1)C𝑘) = ((𝑖C(𝑘 − 1)) + (𝑖C𝑘))) |
| 883 | 882 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = (((𝑖C(𝑘 − 1)) + (𝑖C𝑘)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 884 | 883 | adantll 750 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (1...𝑖)) → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = (((𝑖C(𝑘 − 1)) + (𝑖C𝑘)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 885 | 884 | adantlr 751 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = (((𝑖C(𝑘 − 1)) + (𝑖C𝑘)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 886 | 875, 837,
846 | adddird 10065 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (((𝑖C(𝑘 − 1)) + (𝑖C𝑘)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = (((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 887 | 885, 886 | eqtr2d 2657 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 888 | 887 | sumeq2dv 14433 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (1...𝑖)(((𝑖C(𝑘 − 1)) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) + ((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 889 | 869, 878,
888 | 3eqtrd 2660 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 890 | 889 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + (Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) = (((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 891 | | peano2nn0 11333 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ ℕ0
→ (𝑖 + 1) ∈
ℕ0) |
| 892 | 831, 891 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → (𝑖 + 1) ∈
ℕ0) |
| 893 | 892, 833 | bccld 39531 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖 + 1)C𝑘) ∈
ℕ0) |
| 894 | 893 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
| 895 | 894 | adantll 750 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
| 896 | 895 | adantlr 751 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
| 897 | 896, 846 | mulcld 10060 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (1...𝑖)) → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
| 898 | 814, 897 | fsumcl 14464 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
| 899 | 691, 757,
898 | addassd 10062 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))))) |
| 900 | 192, 891 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈
ℕ0) |
| 901 | | bcn0 13097 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 + 1) ∈ ℕ0
→ ((𝑖 + 1)C0) =
1) |
| 902 | 900, 901 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖 + 1)C0) = 1) |
| 903 | 902, 732 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑁) → (((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) = (1 · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)))) |
| 904 | 903 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) = (1 · (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)))) |
| 905 | 904, 758 | eqtr2d 2657 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) = (((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥)))) |
| 906 | 808 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((0...𝑖) ∖ {0}) = (1...𝑖)) |
| 907 | 906 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (1...𝑖) = ((0...𝑖) ∖ {0})) |
| 908 | 907 | sumeq1d 14431 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = Σ𝑘 ∈ ((0...𝑖) ∖ {0})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 909 | 905, 908 | oveq12d 6668 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = ((((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 910 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘((𝑖 + 1)C0) |
| 911 | 910, 479,
714 | nfov 6676 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘(((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) |
| 912 | 204, 891 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → (𝑖 + 1) ∈
ℕ0) |
| 913 | 912, 206 | bccld 39531 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1)C𝑘) ∈
ℕ0) |
| 914 | 913 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
| 915 | 914 | adantll 750 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
| 916 | 915 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
| 917 | 916, 459 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝑖)) → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
| 918 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 0 → ((𝑖 + 1)C𝑘) = ((𝑖 + 1)C0)) |
| 919 | 918, 726 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = (((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥)))) |
| 920 | 496, 911,
462, 917, 720, 919 | fsumsplit1 39804 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = ((((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 921 | 920 | eqcomd 2628 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((((𝑖 + 1)C0) · (((𝐶‘0)‘𝑥) · ((𝐷‘((𝑖 + 1) − 0))‘𝑥))) + Σ𝑘 ∈ ((0...𝑖) ∖ {0})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (0...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 922 | 909, 921 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (0...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 923 | 922 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) = ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + Σ𝑘 ∈ (0...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 924 | | bcnn 13099 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 + 1) ∈ ℕ0
→ ((𝑖 + 1)C(𝑖 + 1)) = 1) |
| 925 | 900, 924 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → ((𝑖 + 1)C(𝑖 + 1)) = 1) |
| 926 | 925 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝑖 + 1)C(𝑖 + 1)) = 1) |
| 927 | 926 | oveq1d 6665 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝑖 + 1)C(𝑖 + 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) = (1 · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)))) |
| 928 | 654 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝐷‘((𝑖 + 1) − (𝑖 + 1))) = (𝐷‘0)) |
| 929 | 928 | feq1d 6030 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → ((𝐷‘((𝑖 + 1) − (𝑖 + 1))):𝑋⟶ℂ ↔ (𝐷‘0):𝑋⟶ℂ)) |
| 930 | 689, 929 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝐷‘((𝑖 + 1) − (𝑖 + 1))):𝑋⟶ℂ) |
| 931 | 930 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (𝐷‘((𝑖 + 1) − (𝑖 + 1))):𝑋⟶ℂ) |
| 932 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 933 | 931, 932 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥) ∈ ℂ) |
| 934 | 675, 933 | mulcld 10060 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)) ∈ ℂ) |
| 935 | 934 | mulid2d 10058 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (1 · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) = (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) |
| 936 | 656 | ad2antlr 763 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)) = (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥))) |
| 937 | 927, 935,
936 | 3eqtrrd 2661 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) = (((𝑖 + 1)C(𝑖 + 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)))) |
| 938 | | fzdifsuc 12400 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈
(ℤ≥‘0) → (0...𝑖) = ((0...(𝑖 + 1)) ∖ {(𝑖 + 1)})) |
| 939 | 717, 938 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → (0...𝑖) = ((0...(𝑖 + 1)) ∖ {(𝑖 + 1)})) |
| 940 | 939 | sumeq1d 14431 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (0..^𝑁) → Σ𝑘 ∈ (0...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = Σ𝑘 ∈ ((0...(𝑖 + 1)) ∖ {(𝑖 + 1)})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 941 | 940 | ad2antlr 763 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = Σ𝑘 ∈ ((0...(𝑖 + 1)) ∖ {(𝑖 + 1)})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 942 | 937, 941 | oveq12d 6668 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + Σ𝑘 ∈ (0...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = ((((𝑖 + 1)C(𝑖 + 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) + Σ𝑘 ∈ ((0...(𝑖 + 1)) ∖ {(𝑖 + 1)})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 943 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘((𝑖 + 1)C(𝑖 + 1)) |
| 944 | 664, 482 | nffv 6198 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘((𝐶‘(𝑖 + 1))‘𝑥) |
| 945 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘((𝑖 + 1) − (𝑖 + 1)) |
| 946 | 485, 945 | nffv 6198 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘(𝐷‘((𝑖 + 1) − (𝑖 + 1))) |
| 947 | 946, 482 | nffv 6198 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥) |
| 948 | 944, 479,
947 | nfov 6676 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘(((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)) |
| 949 | 943, 479,
948 | nfov 6676 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(((𝑖 + 1)C(𝑖 + 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) |
| 950 | | fzfid 12772 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (0...(𝑖 + 1)) ∈ Fin) |
| 951 | 900 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑖 + 1) ∈
ℕ0) |
| 952 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (0...(𝑖 + 1)) → 𝑘 ∈ ℤ) |
| 953 | 952 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑘 ∈ ℤ) |
| 954 | 951, 953 | bccld 39531 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1)C𝑘) ∈
ℕ0) |
| 955 | 954 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
| 956 | 955 | adantll 750 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
| 957 | 956 | adantlr 751 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1)C𝑘) ∈ ℂ) |
| 958 | 659 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝜑) |
| 959 | 95 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 0 ∈
ℤ) |
| 960 | 213 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑁 ∈ ℤ) |
| 961 | 959, 960,
953 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈
ℤ)) |
| 962 | | elfzle1 12344 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ (0...(𝑖 + 1)) → 0 ≤ 𝑘) |
| 963 | 962 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 0 ≤ 𝑘) |
| 964 | 953 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑘 ∈ ℝ) |
| 965 | 951 | nn0red 11352 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑖 + 1) ∈ ℝ) |
| 966 | 219 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑁 ∈ ℝ) |
| 967 | | elfzle2 12345 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 ∈ (0...(𝑖 + 1)) → 𝑘 ≤ (𝑖 + 1)) |
| 968 | 967 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑘 ≤ (𝑖 + 1)) |
| 969 | 317 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑖 + 1) ≤ 𝑁) |
| 970 | 964, 965,
966, 968, 969 | letrd 10194 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑘 ≤ 𝑁) |
| 971 | 961, 963,
970 | jca32 558 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (0 ≤
𝑘 ∧ 𝑘 ≤ 𝑁))) |
| 972 | 971, 230 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑘 ∈ (0...𝑁)) |
| 973 | 972 | adantll 750 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑘 ∈ (0...𝑁)) |
| 974 | 958, 973,
238 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝐶‘𝑘):𝑋⟶ℂ) |
| 975 | 974 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝐶‘𝑘):𝑋⟶ℂ) |
| 976 | | simplr 792 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝑥 ∈ 𝑋) |
| 977 | 975, 976 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝐶‘𝑘)‘𝑥) ∈ ℂ) |
| 978 | 958 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 𝜑) |
| 979 | 622 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑖 + 1) ∈ ℤ) |
| 980 | 979, 953 | zsubcld 11487 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ∈ ℤ) |
| 981 | 959, 960,
980 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝑖 + 1) − 𝑘) ∈ ℤ)) |
| 982 | 965, 964 | subge0d 10617 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (0 ≤ ((𝑖 + 1) − 𝑘) ↔ 𝑘 ≤ (𝑖 + 1))) |
| 983 | 968, 982 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 0 ≤ ((𝑖 + 1) − 𝑘)) |
| 984 | 965, 964 | resubcld 10458 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ∈ ℝ) |
| 985 | 966, 964 | resubcld 10458 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑁 − 𝑘) ∈ ℝ) |
| 986 | 966, 178,
257 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑁 − 0) ∈ ℝ) |
| 987 | 965, 966,
964, 969 | lesub1dd 10643 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ≤ (𝑁 − 𝑘)) |
| 988 | 178 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → 0 ∈
ℝ) |
| 989 | 988, 964,
966, 963 | lesub2dd 10644 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑁 − 𝑘) ≤ (𝑁 − 0)) |
| 990 | 984, 985,
986, 987, 989 | letrd 10194 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ≤ (𝑁 − 0)) |
| 991 | 263 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝑁 − 0) = 𝑁) |
| 992 | 990, 991 | breqtrd 4679 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ≤ 𝑁) |
| 993 | 981, 983,
992 | jca32 558 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝑖 + 1) − 𝑘) ∈ ℤ) ∧ (0 ≤ ((𝑖 + 1) − 𝑘) ∧ ((𝑖 + 1) − 𝑘) ≤ 𝑁))) |
| 994 | 993, 323 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) |
| 995 | 994 | adantll 750 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) |
| 996 | 995 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) |
| 997 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → (𝐷‘𝑗) = (𝐷‘((𝑖 + 1) − 𝑘))) |
| 998 | 997 | feq1d 6030 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → ((𝐷‘𝑗):𝑋⟶ℂ ↔ (𝐷‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ)) |
| 999 | 328, 998 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = ((𝑖 + 1) − 𝑘) → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐷‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) → (𝐷‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ))) |
| 1000 | 485, 367 | nffv 6198 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑘(𝐷‘𝑗) |
| 1001 | 1000, 369, 370 | nff 6041 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝐷‘𝑗):𝑋⟶ℂ |
| 1002 | 364, 1001 | nfim 1825 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐷‘𝑗):𝑋⟶ℂ) |
| 1003 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 𝑗 → (𝐷‘𝑘) = (𝐷‘𝑗)) |
| 1004 | 1003 | feq1d 6030 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 𝑗 → ((𝐷‘𝑘):𝑋⟶ℂ ↔ (𝐷‘𝑗):𝑋⟶ℂ)) |
| 1005 | 279, 1004 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐷‘𝑗):𝑋⟶ℂ))) |
| 1006 | 1002, 1005, 614 | chvar 2262 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐷‘𝑗):𝑋⟶ℂ) |
| 1007 | 326, 999,
1006 | vtocl 3259 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ ((𝑖 + 1) − 𝑘) ∈ (0...𝑁)) → (𝐷‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ) |
| 1008 | 978, 996,
1007 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (𝐷‘((𝑖 + 1) − 𝑘)):𝑋⟶ℂ) |
| 1009 | 1008, 976 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) ∈ ℂ) |
| 1010 | 977, 1009 | mulcld 10060 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)) ∈ ℂ) |
| 1011 | 957, 1010 | mulcld 10060 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...(𝑖 + 1))) → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) ∈ ℂ) |
| 1012 | 900, 716 | eleqtrrd 2704 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈
(ℤ≥‘0)) |
| 1013 | | eluzfz2 12349 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 + 1) ∈
(ℤ≥‘0) → (𝑖 + 1) ∈ (0...(𝑖 + 1))) |
| 1014 | 1012, 1013 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0...(𝑖 + 1))) |
| 1015 | 1014 | ad2antlr 763 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (𝑖 + 1) ∈ (0...(𝑖 + 1))) |
| 1016 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑖 + 1) → ((𝑖 + 1)C𝑘) = ((𝑖 + 1)C(𝑖 + 1))) |
| 1017 | 670 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = (𝑖 + 1) → ((𝐶‘𝑘)‘𝑥) = ((𝐶‘(𝑖 + 1))‘𝑥)) |
| 1018 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = (𝑖 + 1) → ((𝑖 + 1) − 𝑘) = ((𝑖 + 1) − (𝑖 + 1))) |
| 1019 | 1018 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = (𝑖 + 1) → (𝐷‘((𝑖 + 1) − 𝑘)) = (𝐷‘((𝑖 + 1) − (𝑖 + 1)))) |
| 1020 | 1019 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = (𝑖 + 1) → ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥) = ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)) |
| 1021 | 1017, 1020 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑖 + 1) → (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)) = (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) |
| 1022 | 1016, 1021 | oveq12d 6668 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑖 + 1) → (((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = (((𝑖 + 1)C(𝑖 + 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥)))) |
| 1023 | 496, 949,
950, 1011, 1015, 1022 | fsumsplit1 39804 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))) = ((((𝑖 + 1)C(𝑖 + 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) + Σ𝑘 ∈ ((0...(𝑖 + 1)) ∖ {(𝑖 + 1)})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 1024 | 1023 | eqcomd 2628 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((((𝑖 + 1)C(𝑖 + 1)) · (((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘((𝑖 + 1) − (𝑖 + 1)))‘𝑥))) + Σ𝑘 ∈ ((0...(𝑖 + 1)) ∖ {(𝑖 + 1)})(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 1025 | 923, 942,
1024 | 3eqtrd 2660 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → ((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + ((((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥)) + Σ𝑘 ∈ (1...𝑖)(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) = Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 1026 | 890, 899,
1025 | 3eqtrd 2660 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (((((𝐶‘(𝑖 + 1))‘𝑥) · ((𝐷‘0)‘𝑥)) + (((𝐶‘0)‘𝑥) · ((𝐷‘(𝑖 + 1))‘𝑥))) + (Σ𝑗 ∈ (1...𝑖)((𝑖C(𝑗 − 1)) · (((𝐶‘𝑗)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑗))‘𝑥))) + Σ𝑘 ∈ (1...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) = Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 1027 | 813, 849,
1026 | 3eqtrd 2660 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → (Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))) + Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 1028 | 461, 465,
1027 | 3eqtrd 2660 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) = Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥)))) |
| 1029 | 1028 | mpteq2dva 4744 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · ((((𝐶‘(𝑘 + 1))‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥)) + (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 1030 | 445, 1029 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 1031 | 1030 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 1032 | 196, 198,
1031 | 3eqtrd 2660 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) ∧ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 1033 | 185, 186,
189, 1032 | syl21anc 1325 |
. . . . . 6
⊢ ((𝑖 ∈ (0..^𝑁) ∧ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) ∧ 𝜑) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))) |
| 1034 | 1033 | 3exp 1264 |
. . . . 5
⊢ (𝑖 ∈ (0..^𝑁) → ((𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑖) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑖)((𝑖C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑖 − 𝑘))‘𝑥))))) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘(𝑖 + 1)) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...(𝑖 + 1))(((𝑖 + 1)C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘((𝑖 + 1) − 𝑘))‘𝑥))))))) |
| 1035 | 36, 50, 64, 78, 184, 1034 | fzind2 12586 |
. . . 4
⊢ (𝑛 ∈ (0...𝑁) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑛 − 𝑘))‘𝑥)))))) |
| 1036 | 22, 1035 | vtoclg 3266 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (𝑁 ∈ (0...𝑁) → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥))))))) |
| 1037 | 2, 6, 1036 | sylc 65 |
. 2
⊢ (𝜑 → (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥)))))) |
| 1038 | 1, 1037 | mpd 15 |
1
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥))))) |