![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumzunsnd | Structured version Visualization version GIF version |
Description: Append an element to a finite group sum, more general version of gsumunsnd 18357. (Contributed by AV, 7-Oct-2019.) |
Ref | Expression |
---|---|
gsumzunsnd.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumzunsnd.p | ⊢ + = (+g‘𝐺) |
gsumzunsnd.z | ⊢ 𝑍 = (Cntz‘𝐺) |
gsumzunsnd.f | ⊢ 𝐹 = (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) |
gsumzunsnd.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
gsumzunsnd.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
gsumzunsnd.c | ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
gsumzunsnd.x | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
gsumzunsnd.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
gsumzunsnd.d | ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) |
gsumzunsnd.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
gsumzunsnd.s | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) |
Ref | Expression |
---|---|
gsumzunsnd | ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumzunsnd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2622 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | gsumzunsnd.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | gsumzunsnd.z | . . 3 ⊢ 𝑍 = (Cntz‘𝐺) | |
5 | gsumzunsnd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
6 | gsumzunsnd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
7 | snfi 8038 | . . . 4 ⊢ {𝑀} ∈ Fin | |
8 | unfi 8227 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ {𝑀} ∈ Fin) → (𝐴 ∪ {𝑀}) ∈ Fin) | |
9 | 6, 7, 8 | sylancl 694 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝑀}) ∈ Fin) |
10 | elun 3753 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∪ {𝑀}) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝑀})) | |
11 | gsumzunsnd.x | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
12 | elsni 4194 | . . . . . . . 8 ⊢ (𝑘 ∈ {𝑀} → 𝑘 = 𝑀) | |
13 | gsumzunsnd.s | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) | |
14 | 12, 13 | sylan2 491 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝑋 = 𝑌) |
15 | gsumzunsnd.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
16 | 15 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝑌 ∈ 𝐵) |
17 | 14, 16 | eqeltrd 2701 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝑋 ∈ 𝐵) |
18 | 11, 17 | jaodan 826 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝑀})) → 𝑋 ∈ 𝐵) |
19 | 10, 18 | sylan2b 492 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝑀})) → 𝑋 ∈ 𝐵) |
20 | gsumzunsnd.f | . . . 4 ⊢ 𝐹 = (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) | |
21 | 19, 20 | fmptd 6385 | . . 3 ⊢ (𝜑 → 𝐹:(𝐴 ∪ {𝑀})⟶𝐵) |
22 | gsumzunsnd.c | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) | |
23 | 11 | expcom 451 | . . . . . . 7 ⊢ (𝑘 ∈ 𝐴 → (𝜑 → 𝑋 ∈ 𝐵)) |
24 | 15 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑌 ∈ 𝐵) |
25 | 13, 24 | eqeltrd 2701 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 ∈ 𝐵) |
26 | 25 | expcom 451 | . . . . . . . 8 ⊢ (𝑘 = 𝑀 → (𝜑 → 𝑋 ∈ 𝐵)) |
27 | 12, 26 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ {𝑀} → (𝜑 → 𝑋 ∈ 𝐵)) |
28 | 23, 27 | jaoi 394 | . . . . . 6 ⊢ ((𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝑀}) → (𝜑 → 𝑋 ∈ 𝐵)) |
29 | 10, 28 | sylbi 207 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∪ {𝑀}) → (𝜑 → 𝑋 ∈ 𝐵)) |
30 | 29 | impcom 446 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝑀})) → 𝑋 ∈ 𝐵) |
31 | fvexd 6203 | . . . 4 ⊢ (𝜑 → (0g‘𝐺) ∈ V) | |
32 | 20, 9, 30, 31 | fsuppmptdm 8286 | . . 3 ⊢ (𝜑 → 𝐹 finSupp (0g‘𝐺)) |
33 | gsumzunsnd.d | . . . 4 ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) | |
34 | disjsn 4246 | . . . 4 ⊢ ((𝐴 ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ 𝐴) | |
35 | 33, 34 | sylibr 224 | . . 3 ⊢ (𝜑 → (𝐴 ∩ {𝑀}) = ∅) |
36 | eqidd 2623 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝑀}) = (𝐴 ∪ {𝑀})) | |
37 | 1, 2, 3, 4, 5, 9, 21, 22, 32, 35, 36 | gsumzsplit 18327 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ 𝐴)) + (𝐺 Σg (𝐹 ↾ {𝑀})))) |
38 | 20 | reseq1i 5392 | . . . . 5 ⊢ (𝐹 ↾ 𝐴) = ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ 𝐴) |
39 | ssun1 3776 | . . . . . 6 ⊢ 𝐴 ⊆ (𝐴 ∪ {𝑀}) | |
40 | resmpt 5449 | . . . . . 6 ⊢ (𝐴 ⊆ (𝐴 ∪ {𝑀}) → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝑋)) | |
41 | 39, 40 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝑋)) |
42 | 38, 41 | syl5eq 2668 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝑋)) |
43 | 42 | oveq2d 6666 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐴)) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋))) |
44 | 20 | reseq1i 5392 | . . . . 5 ⊢ (𝐹 ↾ {𝑀}) = ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ {𝑀}) |
45 | ssun2 3777 | . . . . . 6 ⊢ {𝑀} ⊆ (𝐴 ∪ {𝑀}) | |
46 | resmpt 5449 | . . . . . 6 ⊢ ({𝑀} ⊆ (𝐴 ∪ {𝑀}) → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝑋)) | |
47 | 45, 46 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝑋)) |
48 | 44, 47 | syl5eq 2668 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝑋)) |
49 | 48 | oveq2d 6666 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ {𝑀})) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) |
50 | 43, 49 | oveq12d 6668 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝐹 ↾ 𝐴)) + (𝐺 Σg (𝐹 ↾ {𝑀}))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)))) |
51 | gsumzunsnd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
52 | 1, 5, 51, 15, 13 | gsumsnd 18352 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌) |
53 | 52 | oveq2d 6666 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
54 | 37, 50, 53 | 3eqtrd 2660 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 383 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∪ cun 3572 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 {csn 4177 ↦ cmpt 4729 ran crn 5115 ↾ cres 5116 ‘cfv 5888 (class class class)co 6650 Fincfn 7955 Basecbs 15857 +gcplusg 15941 0gc0g 16100 Σg cgsu 16101 Mndcmnd 17294 Cntzccntz 17748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-seq 12802 df-hash 13118 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-0g 16102 df-gsum 16103 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-mulg 17541 df-cntz 17750 df-cmn 18195 |
This theorem is referenced by: mplcoe5 19468 |
Copyright terms: Public domain | W3C validator |