MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbc Structured version   Visualization version   GIF version

Theorem hashbc 13237
Description: The binomial coefficient counts the number of subsets of a finite set of a given size. This is Metamath 100 proof #58 (formula for the number of combinations). (Contributed by Mario Carneiro, 13-Jul-2014.)
Assertion
Ref Expression
hashbc ((𝐴 ∈ Fin ∧ 𝐾 ∈ ℤ) → ((#‘𝐴)C𝐾) = (#‘{𝑥 ∈ 𝒫 𝐴 ∣ (#‘𝑥) = 𝐾}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐾

Proof of Theorem hashbc
Dummy variables 𝑗 𝑘 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . 6 (𝑤 = ∅ → (#‘𝑤) = (#‘∅))
21oveq1d 6665 . . . . 5 (𝑤 = ∅ → ((#‘𝑤)C𝑘) = ((#‘∅)C𝑘))
3 pweq 4161 . . . . . . 7 (𝑤 = ∅ → 𝒫 𝑤 = 𝒫 ∅)
4 rabeq 3192 . . . . . . 7 (𝒫 𝑤 = 𝒫 ∅ → {𝑥 ∈ 𝒫 𝑤 ∣ (#‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 ∅ ∣ (#‘𝑥) = 𝑘})
53, 4syl 17 . . . . . 6 (𝑤 = ∅ → {𝑥 ∈ 𝒫 𝑤 ∣ (#‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 ∅ ∣ (#‘𝑥) = 𝑘})
65fveq2d 6195 . . . . 5 (𝑤 = ∅ → (#‘{𝑥 ∈ 𝒫 𝑤 ∣ (#‘𝑥) = 𝑘}) = (#‘{𝑥 ∈ 𝒫 ∅ ∣ (#‘𝑥) = 𝑘}))
72, 6eqeq12d 2637 . . . 4 (𝑤 = ∅ → (((#‘𝑤)C𝑘) = (#‘{𝑥 ∈ 𝒫 𝑤 ∣ (#‘𝑥) = 𝑘}) ↔ ((#‘∅)C𝑘) = (#‘{𝑥 ∈ 𝒫 ∅ ∣ (#‘𝑥) = 𝑘})))
87ralbidv 2986 . . 3 (𝑤 = ∅ → (∀𝑘 ∈ ℤ ((#‘𝑤)C𝑘) = (#‘{𝑥 ∈ 𝒫 𝑤 ∣ (#‘𝑥) = 𝑘}) ↔ ∀𝑘 ∈ ℤ ((#‘∅)C𝑘) = (#‘{𝑥 ∈ 𝒫 ∅ ∣ (#‘𝑥) = 𝑘})))
9 fveq2 6191 . . . . . 6 (𝑤 = 𝑦 → (#‘𝑤) = (#‘𝑦))
109oveq1d 6665 . . . . 5 (𝑤 = 𝑦 → ((#‘𝑤)C𝑘) = ((#‘𝑦)C𝑘))
11 pweq 4161 . . . . . . 7 (𝑤 = 𝑦 → 𝒫 𝑤 = 𝒫 𝑦)
12 rabeq 3192 . . . . . . 7 (𝒫 𝑤 = 𝒫 𝑦 → {𝑥 ∈ 𝒫 𝑤 ∣ (#‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 𝑦 ∣ (#‘𝑥) = 𝑘})
1311, 12syl 17 . . . . . 6 (𝑤 = 𝑦 → {𝑥 ∈ 𝒫 𝑤 ∣ (#‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 𝑦 ∣ (#‘𝑥) = 𝑘})
1413fveq2d 6195 . . . . 5 (𝑤 = 𝑦 → (#‘{𝑥 ∈ 𝒫 𝑤 ∣ (#‘𝑥) = 𝑘}) = (#‘{𝑥 ∈ 𝒫 𝑦 ∣ (#‘𝑥) = 𝑘}))
1510, 14eqeq12d 2637 . . . 4 (𝑤 = 𝑦 → (((#‘𝑤)C𝑘) = (#‘{𝑥 ∈ 𝒫 𝑤 ∣ (#‘𝑥) = 𝑘}) ↔ ((#‘𝑦)C𝑘) = (#‘{𝑥 ∈ 𝒫 𝑦 ∣ (#‘𝑥) = 𝑘})))
1615ralbidv 2986 . . 3 (𝑤 = 𝑦 → (∀𝑘 ∈ ℤ ((#‘𝑤)C𝑘) = (#‘{𝑥 ∈ 𝒫 𝑤 ∣ (#‘𝑥) = 𝑘}) ↔ ∀𝑘 ∈ ℤ ((#‘𝑦)C𝑘) = (#‘{𝑥 ∈ 𝒫 𝑦 ∣ (#‘𝑥) = 𝑘})))
17 fveq2 6191 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → (#‘𝑤) = (#‘(𝑦 ∪ {𝑧})))
1817oveq1d 6665 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → ((#‘𝑤)C𝑘) = ((#‘(𝑦 ∪ {𝑧}))C𝑘))
19 pweq 4161 . . . . . . 7 (𝑤 = (𝑦 ∪ {𝑧}) → 𝒫 𝑤 = 𝒫 (𝑦 ∪ {𝑧}))
20 rabeq 3192 . . . . . . 7 (𝒫 𝑤 = 𝒫 (𝑦 ∪ {𝑧}) → {𝑥 ∈ 𝒫 𝑤 ∣ (#‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (#‘𝑥) = 𝑘})
2119, 20syl 17 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → {𝑥 ∈ 𝒫 𝑤 ∣ (#‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (#‘𝑥) = 𝑘})
2221fveq2d 6195 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → (#‘{𝑥 ∈ 𝒫 𝑤 ∣ (#‘𝑥) = 𝑘}) = (#‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (#‘𝑥) = 𝑘}))
2318, 22eqeq12d 2637 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (((#‘𝑤)C𝑘) = (#‘{𝑥 ∈ 𝒫 𝑤 ∣ (#‘𝑥) = 𝑘}) ↔ ((#‘(𝑦 ∪ {𝑧}))C𝑘) = (#‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (#‘𝑥) = 𝑘})))
2423ralbidv 2986 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ ℤ ((#‘𝑤)C𝑘) = (#‘{𝑥 ∈ 𝒫 𝑤 ∣ (#‘𝑥) = 𝑘}) ↔ ∀𝑘 ∈ ℤ ((#‘(𝑦 ∪ {𝑧}))C𝑘) = (#‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (#‘𝑥) = 𝑘})))
25 fveq2 6191 . . . . . 6 (𝑤 = 𝐴 → (#‘𝑤) = (#‘𝐴))
2625oveq1d 6665 . . . . 5 (𝑤 = 𝐴 → ((#‘𝑤)C𝑘) = ((#‘𝐴)C𝑘))
27 pweq 4161 . . . . . . 7 (𝑤 = 𝐴 → 𝒫 𝑤 = 𝒫 𝐴)
28 rabeq 3192 . . . . . . 7 (𝒫 𝑤 = 𝒫 𝐴 → {𝑥 ∈ 𝒫 𝑤 ∣ (#‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 𝐴 ∣ (#‘𝑥) = 𝑘})
2927, 28syl 17 . . . . . 6 (𝑤 = 𝐴 → {𝑥 ∈ 𝒫 𝑤 ∣ (#‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 𝐴 ∣ (#‘𝑥) = 𝑘})
3029fveq2d 6195 . . . . 5 (𝑤 = 𝐴 → (#‘{𝑥 ∈ 𝒫 𝑤 ∣ (#‘𝑥) = 𝑘}) = (#‘{𝑥 ∈ 𝒫 𝐴 ∣ (#‘𝑥) = 𝑘}))
3126, 30eqeq12d 2637 . . . 4 (𝑤 = 𝐴 → (((#‘𝑤)C𝑘) = (#‘{𝑥 ∈ 𝒫 𝑤 ∣ (#‘𝑥) = 𝑘}) ↔ ((#‘𝐴)C𝑘) = (#‘{𝑥 ∈ 𝒫 𝐴 ∣ (#‘𝑥) = 𝑘})))
3231ralbidv 2986 . . 3 (𝑤 = 𝐴 → (∀𝑘 ∈ ℤ ((#‘𝑤)C𝑘) = (#‘{𝑥 ∈ 𝒫 𝑤 ∣ (#‘𝑥) = 𝑘}) ↔ ∀𝑘 ∈ ℤ ((#‘𝐴)C𝑘) = (#‘{𝑥 ∈ 𝒫 𝐴 ∣ (#‘𝑥) = 𝑘})))
33 hash0 13158 . . . . . . . . . 10 (#‘∅) = 0
3433a1i 11 . . . . . . . . 9 (𝑘 ∈ (0...0) → (#‘∅) = 0)
35 elfz1eq 12352 . . . . . . . . 9 (𝑘 ∈ (0...0) → 𝑘 = 0)
3634, 35oveq12d 6668 . . . . . . . 8 (𝑘 ∈ (0...0) → ((#‘∅)C𝑘) = (0C0))
37 0nn0 11307 . . . . . . . . 9 0 ∈ ℕ0
38 bcn0 13097 . . . . . . . . 9 (0 ∈ ℕ0 → (0C0) = 1)
3937, 38ax-mp 5 . . . . . . . 8 (0C0) = 1
4036, 39syl6eq 2672 . . . . . . 7 (𝑘 ∈ (0...0) → ((#‘∅)C𝑘) = 1)
41 pw0 4343 . . . . . . . . . 10 𝒫 ∅ = {∅}
4235eqcomd 2628 . . . . . . . . . . . 12 (𝑘 ∈ (0...0) → 0 = 𝑘)
4341raleqi 3142 . . . . . . . . . . . . 13 (∀𝑥 ∈ 𝒫 ∅(#‘𝑥) = 𝑘 ↔ ∀𝑥 ∈ {∅} (#‘𝑥) = 𝑘)
44 0ex 4790 . . . . . . . . . . . . . 14 ∅ ∈ V
45 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (#‘𝑥) = (#‘∅))
4645, 33syl6eq 2672 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (#‘𝑥) = 0)
4746eqeq1d 2624 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ((#‘𝑥) = 𝑘 ↔ 0 = 𝑘))
4844, 47ralsn 4222 . . . . . . . . . . . . 13 (∀𝑥 ∈ {∅} (#‘𝑥) = 𝑘 ↔ 0 = 𝑘)
4943, 48bitri 264 . . . . . . . . . . . 12 (∀𝑥 ∈ 𝒫 ∅(#‘𝑥) = 𝑘 ↔ 0 = 𝑘)
5042, 49sylibr 224 . . . . . . . . . . 11 (𝑘 ∈ (0...0) → ∀𝑥 ∈ 𝒫 ∅(#‘𝑥) = 𝑘)
51 rabid2 3118 . . . . . . . . . . 11 (𝒫 ∅ = {𝑥 ∈ 𝒫 ∅ ∣ (#‘𝑥) = 𝑘} ↔ ∀𝑥 ∈ 𝒫 ∅(#‘𝑥) = 𝑘)
5250, 51sylibr 224 . . . . . . . . . 10 (𝑘 ∈ (0...0) → 𝒫 ∅ = {𝑥 ∈ 𝒫 ∅ ∣ (#‘𝑥) = 𝑘})
5341, 52syl5reqr 2671 . . . . . . . . 9 (𝑘 ∈ (0...0) → {𝑥 ∈ 𝒫 ∅ ∣ (#‘𝑥) = 𝑘} = {∅})
5453fveq2d 6195 . . . . . . . 8 (𝑘 ∈ (0...0) → (#‘{𝑥 ∈ 𝒫 ∅ ∣ (#‘𝑥) = 𝑘}) = (#‘{∅}))
55 hashsng 13159 . . . . . . . . 9 (∅ ∈ V → (#‘{∅}) = 1)
5644, 55ax-mp 5 . . . . . . . 8 (#‘{∅}) = 1
5754, 56syl6eq 2672 . . . . . . 7 (𝑘 ∈ (0...0) → (#‘{𝑥 ∈ 𝒫 ∅ ∣ (#‘𝑥) = 𝑘}) = 1)
5840, 57eqtr4d 2659 . . . . . 6 (𝑘 ∈ (0...0) → ((#‘∅)C𝑘) = (#‘{𝑥 ∈ 𝒫 ∅ ∣ (#‘𝑥) = 𝑘}))
5958adantl 482 . . . . 5 ((𝑘 ∈ ℤ ∧ 𝑘 ∈ (0...0)) → ((#‘∅)C𝑘) = (#‘{𝑥 ∈ 𝒫 ∅ ∣ (#‘𝑥) = 𝑘}))
6033oveq1i 6660 . . . . . 6 ((#‘∅)C𝑘) = (0C𝑘)
61 bcval3 13093 . . . . . . . 8 ((0 ∈ ℕ0𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) = 0)
6237, 61mp3an1 1411 . . . . . . 7 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) = 0)
63 id 22 . . . . . . . . . . . . . 14 (0 = 𝑘 → 0 = 𝑘)
64 0z 11388 . . . . . . . . . . . . . . 15 0 ∈ ℤ
65 elfz3 12351 . . . . . . . . . . . . . . 15 (0 ∈ ℤ → 0 ∈ (0...0))
6664, 65ax-mp 5 . . . . . . . . . . . . . 14 0 ∈ (0...0)
6763, 66syl6eqelr 2710 . . . . . . . . . . . . 13 (0 = 𝑘𝑘 ∈ (0...0))
6867con3i 150 . . . . . . . . . . . 12 𝑘 ∈ (0...0) → ¬ 0 = 𝑘)
6968adantl 482 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → ¬ 0 = 𝑘)
7041raleqi 3142 . . . . . . . . . . . 12 (∀𝑥 ∈ 𝒫 ∅ ¬ (#‘𝑥) = 𝑘 ↔ ∀𝑥 ∈ {∅} ¬ (#‘𝑥) = 𝑘)
7147notbid 308 . . . . . . . . . . . . 13 (𝑥 = ∅ → (¬ (#‘𝑥) = 𝑘 ↔ ¬ 0 = 𝑘))
7244, 71ralsn 4222 . . . . . . . . . . . 12 (∀𝑥 ∈ {∅} ¬ (#‘𝑥) = 𝑘 ↔ ¬ 0 = 𝑘)
7370, 72bitri 264 . . . . . . . . . . 11 (∀𝑥 ∈ 𝒫 ∅ ¬ (#‘𝑥) = 𝑘 ↔ ¬ 0 = 𝑘)
7469, 73sylibr 224 . . . . . . . . . 10 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → ∀𝑥 ∈ 𝒫 ∅ ¬ (#‘𝑥) = 𝑘)
75 rabeq0 3957 . . . . . . . . . 10 ({𝑥 ∈ 𝒫 ∅ ∣ (#‘𝑥) = 𝑘} = ∅ ↔ ∀𝑥 ∈ 𝒫 ∅ ¬ (#‘𝑥) = 𝑘)
7674, 75sylibr 224 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → {𝑥 ∈ 𝒫 ∅ ∣ (#‘𝑥) = 𝑘} = ∅)
7776fveq2d 6195 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (#‘{𝑥 ∈ 𝒫 ∅ ∣ (#‘𝑥) = 𝑘}) = (#‘∅))
7877, 33syl6eq 2672 . . . . . . 7 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (#‘{𝑥 ∈ 𝒫 ∅ ∣ (#‘𝑥) = 𝑘}) = 0)
7962, 78eqtr4d 2659 . . . . . 6 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) = (#‘{𝑥 ∈ 𝒫 ∅ ∣ (#‘𝑥) = 𝑘}))
8060, 79syl5eq 2668 . . . . 5 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → ((#‘∅)C𝑘) = (#‘{𝑥 ∈ 𝒫 ∅ ∣ (#‘𝑥) = 𝑘}))
8159, 80pm2.61dan 832 . . . 4 (𝑘 ∈ ℤ → ((#‘∅)C𝑘) = (#‘{𝑥 ∈ 𝒫 ∅ ∣ (#‘𝑥) = 𝑘}))
8281rgen 2922 . . 3 𝑘 ∈ ℤ ((#‘∅)C𝑘) = (#‘{𝑥 ∈ 𝒫 ∅ ∣ (#‘𝑥) = 𝑘})
83 oveq2 6658 . . . . . 6 (𝑘 = 𝑗 → ((#‘𝑦)C𝑘) = ((#‘𝑦)C𝑗))
84 eqeq2 2633 . . . . . . . . 9 (𝑘 = 𝑗 → ((#‘𝑥) = 𝑘 ↔ (#‘𝑥) = 𝑗))
8584rabbidv 3189 . . . . . . . 8 (𝑘 = 𝑗 → {𝑥 ∈ 𝒫 𝑦 ∣ (#‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 𝑦 ∣ (#‘𝑥) = 𝑗})
86 fveq2 6191 . . . . . . . . . 10 (𝑥 = 𝑧 → (#‘𝑥) = (#‘𝑧))
8786eqeq1d 2624 . . . . . . . . 9 (𝑥 = 𝑧 → ((#‘𝑥) = 𝑗 ↔ (#‘𝑧) = 𝑗))
8887cbvrabv 3199 . . . . . . . 8 {𝑥 ∈ 𝒫 𝑦 ∣ (#‘𝑥) = 𝑗} = {𝑧 ∈ 𝒫 𝑦 ∣ (#‘𝑧) = 𝑗}
8985, 88syl6eq 2672 . . . . . . 7 (𝑘 = 𝑗 → {𝑥 ∈ 𝒫 𝑦 ∣ (#‘𝑥) = 𝑘} = {𝑧 ∈ 𝒫 𝑦 ∣ (#‘𝑧) = 𝑗})
9089fveq2d 6195 . . . . . 6 (𝑘 = 𝑗 → (#‘{𝑥 ∈ 𝒫 𝑦 ∣ (#‘𝑥) = 𝑘}) = (#‘{𝑧 ∈ 𝒫 𝑦 ∣ (#‘𝑧) = 𝑗}))
9183, 90eqeq12d 2637 . . . . 5 (𝑘 = 𝑗 → (((#‘𝑦)C𝑘) = (#‘{𝑥 ∈ 𝒫 𝑦 ∣ (#‘𝑥) = 𝑘}) ↔ ((#‘𝑦)C𝑗) = (#‘{𝑧 ∈ 𝒫 𝑦 ∣ (#‘𝑧) = 𝑗})))
9291cbvralv 3171 . . . 4 (∀𝑘 ∈ ℤ ((#‘𝑦)C𝑘) = (#‘{𝑥 ∈ 𝒫 𝑦 ∣ (#‘𝑥) = 𝑘}) ↔ ∀𝑗 ∈ ℤ ((#‘𝑦)C𝑗) = (#‘{𝑧 ∈ 𝒫 𝑦 ∣ (#‘𝑧) = 𝑗}))
93 simpll 790 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((#‘𝑦)C𝑗) = (#‘{𝑧 ∈ 𝒫 𝑦 ∣ (#‘𝑧) = 𝑗}))) → 𝑦 ∈ Fin)
94 simplr 792 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((#‘𝑦)C𝑗) = (#‘{𝑧 ∈ 𝒫 𝑦 ∣ (#‘𝑧) = 𝑗}))) → ¬ 𝑧𝑦)
95 simprr 796 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((#‘𝑦)C𝑗) = (#‘{𝑧 ∈ 𝒫 𝑦 ∣ (#‘𝑧) = 𝑗}))) → ∀𝑗 ∈ ℤ ((#‘𝑦)C𝑗) = (#‘{𝑧 ∈ 𝒫 𝑦 ∣ (#‘𝑧) = 𝑗}))
9688fveq2i 6194 . . . . . . . . . 10 (#‘{𝑥 ∈ 𝒫 𝑦 ∣ (#‘𝑥) = 𝑗}) = (#‘{𝑧 ∈ 𝒫 𝑦 ∣ (#‘𝑧) = 𝑗})
9796eqeq2i 2634 . . . . . . . . 9 (((#‘𝑦)C𝑗) = (#‘{𝑥 ∈ 𝒫 𝑦 ∣ (#‘𝑥) = 𝑗}) ↔ ((#‘𝑦)C𝑗) = (#‘{𝑧 ∈ 𝒫 𝑦 ∣ (#‘𝑧) = 𝑗}))
9897ralbii 2980 . . . . . . . 8 (∀𝑗 ∈ ℤ ((#‘𝑦)C𝑗) = (#‘{𝑥 ∈ 𝒫 𝑦 ∣ (#‘𝑥) = 𝑗}) ↔ ∀𝑗 ∈ ℤ ((#‘𝑦)C𝑗) = (#‘{𝑧 ∈ 𝒫 𝑦 ∣ (#‘𝑧) = 𝑗}))
9995, 98sylibr 224 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((#‘𝑦)C𝑗) = (#‘{𝑧 ∈ 𝒫 𝑦 ∣ (#‘𝑧) = 𝑗}))) → ∀𝑗 ∈ ℤ ((#‘𝑦)C𝑗) = (#‘{𝑥 ∈ 𝒫 𝑦 ∣ (#‘𝑥) = 𝑗}))
100 simprl 794 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((#‘𝑦)C𝑗) = (#‘{𝑧 ∈ 𝒫 𝑦 ∣ (#‘𝑧) = 𝑗}))) → 𝑘 ∈ ℤ)
10193, 94, 99, 100hashbclem 13236 . . . . . 6 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑘 ∈ ℤ ∧ ∀𝑗 ∈ ℤ ((#‘𝑦)C𝑗) = (#‘{𝑧 ∈ 𝒫 𝑦 ∣ (#‘𝑧) = 𝑗}))) → ((#‘(𝑦 ∪ {𝑧}))C𝑘) = (#‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (#‘𝑥) = 𝑘}))
102101expr 643 . . . . 5 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑘 ∈ ℤ) → (∀𝑗 ∈ ℤ ((#‘𝑦)C𝑗) = (#‘{𝑧 ∈ 𝒫 𝑦 ∣ (#‘𝑧) = 𝑗}) → ((#‘(𝑦 ∪ {𝑧}))C𝑘) = (#‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (#‘𝑥) = 𝑘})))
103102ralrimdva 2969 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑗 ∈ ℤ ((#‘𝑦)C𝑗) = (#‘{𝑧 ∈ 𝒫 𝑦 ∣ (#‘𝑧) = 𝑗}) → ∀𝑘 ∈ ℤ ((#‘(𝑦 ∪ {𝑧}))C𝑘) = (#‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (#‘𝑥) = 𝑘})))
10492, 103syl5bi 232 . . 3 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑘 ∈ ℤ ((#‘𝑦)C𝑘) = (#‘{𝑥 ∈ 𝒫 𝑦 ∣ (#‘𝑥) = 𝑘}) → ∀𝑘 ∈ ℤ ((#‘(𝑦 ∪ {𝑧}))C𝑘) = (#‘{𝑥 ∈ 𝒫 (𝑦 ∪ {𝑧}) ∣ (#‘𝑥) = 𝑘})))
1058, 16, 24, 32, 82, 104findcard2s 8201 . 2 (𝐴 ∈ Fin → ∀𝑘 ∈ ℤ ((#‘𝐴)C𝑘) = (#‘{𝑥 ∈ 𝒫 𝐴 ∣ (#‘𝑥) = 𝑘}))
106 oveq2 6658 . . . 4 (𝑘 = 𝐾 → ((#‘𝐴)C𝑘) = ((#‘𝐴)C𝐾))
107 eqeq2 2633 . . . . . 6 (𝑘 = 𝐾 → ((#‘𝑥) = 𝑘 ↔ (#‘𝑥) = 𝐾))
108107rabbidv 3189 . . . . 5 (𝑘 = 𝐾 → {𝑥 ∈ 𝒫 𝐴 ∣ (#‘𝑥) = 𝑘} = {𝑥 ∈ 𝒫 𝐴 ∣ (#‘𝑥) = 𝐾})
109108fveq2d 6195 . . . 4 (𝑘 = 𝐾 → (#‘{𝑥 ∈ 𝒫 𝐴 ∣ (#‘𝑥) = 𝑘}) = (#‘{𝑥 ∈ 𝒫 𝐴 ∣ (#‘𝑥) = 𝐾}))
110106, 109eqeq12d 2637 . . 3 (𝑘 = 𝐾 → (((#‘𝐴)C𝑘) = (#‘{𝑥 ∈ 𝒫 𝐴 ∣ (#‘𝑥) = 𝑘}) ↔ ((#‘𝐴)C𝐾) = (#‘{𝑥 ∈ 𝒫 𝐴 ∣ (#‘𝑥) = 𝐾})))
111110rspccva 3308 . 2 ((∀𝑘 ∈ ℤ ((#‘𝐴)C𝑘) = (#‘{𝑥 ∈ 𝒫 𝐴 ∣ (#‘𝑥) = 𝑘}) ∧ 𝐾 ∈ ℤ) → ((#‘𝐴)C𝐾) = (#‘{𝑥 ∈ 𝒫 𝐴 ∣ (#‘𝑥) = 𝐾}))
112105, 111sylan 488 1 ((𝐴 ∈ Fin ∧ 𝐾 ∈ ℤ) → ((#‘𝐴)C𝐾) = (#‘{𝑥 ∈ 𝒫 𝐴 ∣ (#‘𝑥) = 𝐾}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  cun 3572  c0 3915  𝒫 cpw 4158  {csn 4177  cfv 5888  (class class class)co 6650  Fincfn 7955  0cc0 9936  1c1 9937  0cn0 11292  cz 11377  ...cfz 12326  Ccbc 13089  #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-fac 13061  df-bc 13090  df-hash 13118
This theorem is referenced by:  hashbc2  15710  sylow1lem1  18013  musum  24917  ballotlem1  30548  ballotlem2  30550
  Copyright terms: Public domain W3C validator