MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem5 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem5 25096
Description: Lemma 5 for gausslemma2d 25099. (Contributed by AV, 9-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2d.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2dlem5 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀,𝑘   𝑃,𝑘
Allowed substitution hints:   𝑅(𝑥)   𝑁(𝑥,𝑘)

Proof of Theorem gausslemma2dlem5
StepHypRef Expression
1 gausslemma2d.p . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . 3 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
4 gausslemma2d.m . . 3 𝑀 = (⌊‘(𝑃 / 4))
51, 2, 3, 4gausslemma2dlem5a 25095 . 2 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃))
6 fzfi 12771 . . . . . 6 ((𝑀 + 1)...𝐻) ∈ Fin
76a1i 11 . . . . 5 (𝜑 → ((𝑀 + 1)...𝐻) ∈ Fin)
8 neg1cn 11124 . . . . . 6 -1 ∈ ℂ
98a1i 11 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → -1 ∈ ℂ)
10 elfzelz 12342 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ)
11 2z 11409 . . . . . . . . 9 2 ∈ ℤ
1211a1i 11 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℤ)
1310, 12zmulcld 11488 . . . . . . 7 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℤ)
1413zcnd 11483 . . . . . 6 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℂ)
1514adantl 482 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑘 · 2) ∈ ℂ)
167, 9, 15fprodmul 14690 . . . 4 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
176, 8pm3.2i 471 . . . . . . 7 (((𝑀 + 1)...𝐻) ∈ Fin ∧ -1 ∈ ℂ)
18 fprodconst 14708 . . . . . . 7 ((((𝑀 + 1)...𝐻) ∈ Fin ∧ -1 ∈ ℂ) → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 = (-1↑(#‘((𝑀 + 1)...𝐻))))
1917, 18mp1i 13 . . . . . 6 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 = (-1↑(#‘((𝑀 + 1)...𝐻))))
20 nnoddn2prm 15516 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃))
21 nnre 11027 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
2221adantr 481 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ ℝ)
231, 20, 223syl 18 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℝ)
24 4re 11097 . . . . . . . . . . . . . . 15 4 ∈ ℝ
2524a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 4 ∈ ℝ)
26 4ne0 11117 . . . . . . . . . . . . . . 15 4 ≠ 0
2726a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 4 ≠ 0)
2823, 25, 27redivcld 10853 . . . . . . . . . . . . 13 (𝜑 → (𝑃 / 4) ∈ ℝ)
2928flcld 12599 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑃 / 4)) ∈ ℤ)
304, 29syl5eqel 2705 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
3130peano2zd 11485 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ ℤ)
32 nnz 11399 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
33 oddm1d2 15084 . . . . . . . . . . . . . 14 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
3432, 33syl 17 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
3534biimpa 501 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ ℤ)
361, 20, 353syl 18 . . . . . . . . . . 11 (𝜑 → ((𝑃 − 1) / 2) ∈ ℤ)
372, 36syl5eqel 2705 . . . . . . . . . 10 (𝜑𝐻 ∈ ℤ)
381, 4, 2gausslemma2dlem0f 25086 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ≤ 𝐻)
39 eluz2 11693 . . . . . . . . . 10 (𝐻 ∈ (ℤ‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐻))
4031, 37, 38, 39syl3anbrc 1246 . . . . . . . . 9 (𝜑𝐻 ∈ (ℤ‘(𝑀 + 1)))
41 hashfz 13214 . . . . . . . . 9 (𝐻 ∈ (ℤ‘(𝑀 + 1)) → (#‘((𝑀 + 1)...𝐻)) = ((𝐻 − (𝑀 + 1)) + 1))
4240, 41syl 17 . . . . . . . 8 (𝜑 → (#‘((𝑀 + 1)...𝐻)) = ((𝐻 − (𝑀 + 1)) + 1))
4337zcnd 11483 . . . . . . . . . 10 (𝜑𝐻 ∈ ℂ)
4430zcnd 11483 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
45 1cnd 10056 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
4643, 44, 45nppcan2d 10418 . . . . . . . . 9 (𝜑 → ((𝐻 − (𝑀 + 1)) + 1) = (𝐻𝑀))
47 gausslemma2d.n . . . . . . . . 9 𝑁 = (𝐻𝑀)
4846, 47syl6eqr 2674 . . . . . . . 8 (𝜑 → ((𝐻 − (𝑀 + 1)) + 1) = 𝑁)
4942, 48eqtrd 2656 . . . . . . 7 (𝜑 → (#‘((𝑀 + 1)...𝐻)) = 𝑁)
5049oveq2d 6666 . . . . . 6 (𝜑 → (-1↑(#‘((𝑀 + 1)...𝐻))) = (-1↑𝑁))
5119, 50eqtrd 2656 . . . . 5 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 = (-1↑𝑁))
5251oveq1d 6665 . . . 4 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)-1 · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) = ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
5316, 52eqtrd 2656 . . 3 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) = ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
5453oveq1d 6665 . 2 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃))
555, 54eqtrd 2656 1 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  cdif 3571  ifcif 4086  {csn 4177   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  2c2 11070  4c4 11072  cz 11377  cuz 11687  ...cfz 12326  cfl 12591   mod cmo 12668  cexp 12860  #chash 13117  cprod 14635  cdvds 14983  cprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636  df-dvds 14984  df-prm 15386
This theorem is referenced by:  gausslemma2dlem6  25097
  Copyright terms: Public domain W3C validator