MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hofcllem Structured version   Visualization version   Unicode version

Theorem hofcllem 16898
Description: Lemma for hofcl 16899. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofcl.m  |-  M  =  (HomF
`  C )
hofcl.o  |-  O  =  (oppCat `  C )
hofcl.d  |-  D  =  ( SetCat `  U )
hofcl.c  |-  ( ph  ->  C  e.  Cat )
hofcl.u  |-  ( ph  ->  U  e.  V )
hofcl.h  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
hofcllem.b  |-  B  =  ( Base `  C
)
hofcllem.h  |-  H  =  ( Hom  `  C
)
hofcllem.x  |-  ( ph  ->  X  e.  B )
hofcllem.y  |-  ( ph  ->  Y  e.  B )
hofcllem.z  |-  ( ph  ->  Z  e.  B )
hofcllem.w  |-  ( ph  ->  W  e.  B )
hofcllem.s  |-  ( ph  ->  S  e.  B )
hofcllem.t  |-  ( ph  ->  T  e.  B )
hofcllem.m  |-  ( ph  ->  K  e.  ( Z H X ) )
hofcllem.n  |-  ( ph  ->  L  e.  ( Y H W ) )
hofcllem.p  |-  ( ph  ->  P  e.  ( S H Z ) )
hofcllem.q  |-  ( ph  ->  Q  e.  ( W H T ) )
Assertion
Ref Expression
hofcllem  |-  ( ph  ->  ( ( K (
<. S ,  Z >. (comp `  C ) X ) P ) ( <. X ,  Y >. ( 2nd `  M )
<. S ,  T >. ) ( Q ( <. Y ,  W >. (comp `  C ) T ) L ) )  =  ( ( P (
<. Z ,  W >. ( 2nd `  M )
<. S ,  T >. ) Q ) ( <.
( X H Y ) ,  ( Z H W ) >.
(comp `  D )
( S H T ) ) ( K ( <. X ,  Y >. ( 2nd `  M
) <. Z ,  W >. ) L ) ) )

Proof of Theorem hofcllem
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofcllem.b . . . . 5  |-  B  =  ( Base `  C
)
2 hofcllem.h . . . . 5  |-  H  =  ( Hom  `  C
)
3 eqid 2622 . . . . 5  |-  (comp `  C )  =  (comp `  C )
4 hofcl.c . . . . . 6  |-  ( ph  ->  C  e.  Cat )
54adantr 481 . . . . 5  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  C  e.  Cat )
6 hofcllem.s . . . . . 6  |-  ( ph  ->  S  e.  B )
76adantr 481 . . . . 5  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  S  e.  B )
8 hofcllem.z . . . . . 6  |-  ( ph  ->  Z  e.  B )
98adantr 481 . . . . 5  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  Z  e.  B )
10 hofcllem.x . . . . . 6  |-  ( ph  ->  X  e.  B )
1110adantr 481 . . . . 5  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  X  e.  B )
12 hofcllem.p . . . . . 6  |-  ( ph  ->  P  e.  ( S H Z ) )
1312adantr 481 . . . . 5  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  P  e.  ( S H Z ) )
14 hofcllem.m . . . . . 6  |-  ( ph  ->  K  e.  ( Z H X ) )
1514adantr 481 . . . . 5  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  K  e.  ( Z H X ) )
16 hofcllem.t . . . . . 6  |-  ( ph  ->  T  e.  B )
1716adantr 481 . . . . 5  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  T  e.  B )
18 hofcllem.y . . . . . . 7  |-  ( ph  ->  Y  e.  B )
1918adantr 481 . . . . . 6  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  Y  e.  B )
20 simpr 477 . . . . . 6  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  f  e.  ( X H Y ) )
21 hofcllem.w . . . . . . . 8  |-  ( ph  ->  W  e.  B )
22 hofcllem.n . . . . . . . 8  |-  ( ph  ->  L  e.  ( Y H W ) )
23 hofcllem.q . . . . . . . 8  |-  ( ph  ->  Q  e.  ( W H T ) )
241, 2, 3, 4, 18, 21, 16, 22, 23catcocl 16346 . . . . . . 7  |-  ( ph  ->  ( Q ( <. Y ,  W >. (comp `  C ) T ) L )  e.  ( Y H T ) )
2524adantr 481 . . . . . 6  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  ( Q
( <. Y ,  W >. (comp `  C ) T ) L )  e.  ( Y H T ) )
261, 2, 3, 5, 11, 19, 17, 20, 25catcocl 16346 . . . . 5  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  ( ( Q ( <. Y ,  W >. (comp `  C
) T ) L ) ( <. X ,  Y >. (comp `  C
) T ) f )  e.  ( X H T ) )
271, 2, 3, 5, 7, 9, 11, 13, 15, 17, 26catass 16347 . . . 4  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  ( (
( ( Q (
<. Y ,  W >. (comp `  C ) T ) L ) ( <. X ,  Y >. (comp `  C ) T ) f ) ( <. Z ,  X >. (comp `  C ) T ) K ) ( <. S ,  Z >. (comp `  C ) T ) P )  =  ( ( ( Q (
<. Y ,  W >. (comp `  C ) T ) L ) ( <. X ,  Y >. (comp `  C ) T ) f ) ( <. S ,  X >. (comp `  C ) T ) ( K ( <. S ,  Z >. (comp `  C ) X ) P ) ) )
2821adantr 481 . . . . . . . 8  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  W  e.  B )
2922adantr 481 . . . . . . . 8  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  L  e.  ( Y H W ) )
3023adantr 481 . . . . . . . 8  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  Q  e.  ( W H T ) )
311, 2, 3, 5, 11, 19, 28, 20, 29, 17, 30catass 16347 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  ( ( Q ( <. Y ,  W >. (comp `  C
) T ) L ) ( <. X ,  Y >. (comp `  C
) T ) f )  =  ( Q ( <. X ,  W >. (comp `  C ) T ) ( L ( <. X ,  Y >. (comp `  C ) W ) f ) ) )
3231oveq1d 6665 . . . . . 6  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  ( (
( Q ( <. Y ,  W >. (comp `  C ) T ) L ) ( <. X ,  Y >. (comp `  C ) T ) f ) ( <. Z ,  X >. (comp `  C ) T ) K )  =  ( ( Q ( <. X ,  W >. (comp `  C ) T ) ( L ( <. X ,  Y >. (comp `  C ) W ) f ) ) (
<. Z ,  X >. (comp `  C ) T ) K ) )
331, 2, 3, 5, 11, 19, 28, 20, 29catcocl 16346 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  ( L
( <. X ,  Y >. (comp `  C ) W ) f )  e.  ( X H W ) )
341, 2, 3, 5, 9, 11, 28, 15, 33, 17, 30catass 16347 . . . . . 6  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  ( ( Q ( <. X ,  W >. (comp `  C
) T ) ( L ( <. X ,  Y >. (comp `  C
) W ) f ) ) ( <. Z ,  X >. (comp `  C ) T ) K )  =  ( Q ( <. Z ,  W >. (comp `  C
) T ) ( ( L ( <. X ,  Y >. (comp `  C ) W ) f ) ( <. Z ,  X >. (comp `  C ) W ) K ) ) )
3532, 34eqtrd 2656 . . . . 5  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  ( (
( Q ( <. Y ,  W >. (comp `  C ) T ) L ) ( <. X ,  Y >. (comp `  C ) T ) f ) ( <. Z ,  X >. (comp `  C ) T ) K )  =  ( Q ( <. Z ,  W >. (comp `  C
) T ) ( ( L ( <. X ,  Y >. (comp `  C ) W ) f ) ( <. Z ,  X >. (comp `  C ) W ) K ) ) )
3635oveq1d 6665 . . . 4  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  ( (
( ( Q (
<. Y ,  W >. (comp `  C ) T ) L ) ( <. X ,  Y >. (comp `  C ) T ) f ) ( <. Z ,  X >. (comp `  C ) T ) K ) ( <. S ,  Z >. (comp `  C ) T ) P )  =  ( ( Q ( <. Z ,  W >. (comp `  C ) T ) ( ( L (
<. X ,  Y >. (comp `  C ) W ) f ) ( <. Z ,  X >. (comp `  C ) W ) K ) ) (
<. S ,  Z >. (comp `  C ) T ) P ) )
3727, 36eqtr3d 2658 . . 3  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  ( (
( Q ( <. Y ,  W >. (comp `  C ) T ) L ) ( <. X ,  Y >. (comp `  C ) T ) f ) ( <. S ,  X >. (comp `  C ) T ) ( K ( <. S ,  Z >. (comp `  C ) X ) P ) )  =  ( ( Q (
<. Z ,  W >. (comp `  C ) T ) ( ( L (
<. X ,  Y >. (comp `  C ) W ) f ) ( <. Z ,  X >. (comp `  C ) W ) K ) ) (
<. S ,  Z >. (comp `  C ) T ) P ) )
3837mpteq2dva 4744 . 2  |-  ( ph  ->  ( f  e.  ( X H Y ) 
|->  ( ( ( Q ( <. Y ,  W >. (comp `  C ) T ) L ) ( <. X ,  Y >. (comp `  C ) T ) f ) ( <. S ,  X >. (comp `  C ) T ) ( K ( <. S ,  Z >. (comp `  C ) X ) P ) ) )  =  ( f  e.  ( X H Y )  |->  ( ( Q ( <. Z ,  W >. (comp `  C ) T ) ( ( L (
<. X ,  Y >. (comp `  C ) W ) f ) ( <. Z ,  X >. (comp `  C ) W ) K ) ) (
<. S ,  Z >. (comp `  C ) T ) P ) ) )
39 hofcl.m . . 3  |-  M  =  (HomF
`  C )
401, 2, 3, 4, 6, 8, 10, 12, 14catcocl 16346 . . 3  |-  ( ph  ->  ( K ( <. S ,  Z >. (comp `  C ) X ) P )  e.  ( S H X ) )
4139, 4, 1, 2, 10, 18, 6, 16, 3, 40, 24hof2val 16896 . 2  |-  ( ph  ->  ( ( K (
<. S ,  Z >. (comp `  C ) X ) P ) ( <. X ,  Y >. ( 2nd `  M )
<. S ,  T >. ) ( Q ( <. Y ,  W >. (comp `  C ) T ) L ) )  =  ( f  e.  ( X H Y ) 
|->  ( ( ( Q ( <. Y ,  W >. (comp `  C ) T ) L ) ( <. X ,  Y >. (comp `  C ) T ) f ) ( <. S ,  X >. (comp `  C ) T ) ( K ( <. S ,  Z >. (comp `  C ) X ) P ) ) ) )
4239, 4, 1, 2, 8, 21, 6, 16, 3, 12, 23hof2val 16896 . . . 4  |-  ( ph  ->  ( P ( <. Z ,  W >. ( 2nd `  M )
<. S ,  T >. ) Q )  =  ( g  e.  ( Z H W )  |->  ( ( Q ( <. Z ,  W >. (comp `  C ) T ) g ) ( <. S ,  Z >. (comp `  C ) T ) P ) ) )
4339, 4, 1, 2, 10, 18, 8, 21, 3, 14, 22hof2val 16896 . . . 4  |-  ( ph  ->  ( K ( <. X ,  Y >. ( 2nd `  M )
<. Z ,  W >. ) L )  =  ( f  e.  ( X H Y )  |->  ( ( L ( <. X ,  Y >. (comp `  C ) W ) f ) ( <. Z ,  X >. (comp `  C ) W ) K ) ) )
4442, 43oveq12d 6668 . . 3  |-  ( ph  ->  ( ( P (
<. Z ,  W >. ( 2nd `  M )
<. S ,  T >. ) Q ) ( <.
( X H Y ) ,  ( Z H W ) >.
(comp `  D )
( S H T ) ) ( K ( <. X ,  Y >. ( 2nd `  M
) <. Z ,  W >. ) L ) )  =  ( ( g  e.  ( Z H W )  |->  ( ( Q ( <. Z ,  W >. (comp `  C
) T ) g ) ( <. S ,  Z >. (comp `  C
) T ) P ) ) ( <.
( X H Y ) ,  ( Z H W ) >.
(comp `  D )
( S H T ) ) ( f  e.  ( X H Y )  |->  ( ( L ( <. X ,  Y >. (comp `  C
) W ) f ) ( <. Z ,  X >. (comp `  C
) W ) K ) ) ) )
45 hofcl.d . . . 4  |-  D  =  ( SetCat `  U )
46 hofcl.u . . . 4  |-  ( ph  ->  U  e.  V )
47 eqid 2622 . . . 4  |-  (comp `  D )  =  (comp `  D )
48 eqid 2622 . . . . . 6  |-  ( Hom f  `  C )  =  ( Hom f  `  C )
4948, 1, 2, 10, 18homfval 16352 . . . . 5  |-  ( ph  ->  ( X ( Hom f  `  C ) Y )  =  ( X H Y ) )
5048, 1homffn 16353 . . . . . . . 8  |-  ( Hom f  `  C )  Fn  ( B  X.  B )
5150a1i 11 . . . . . . 7  |-  ( ph  ->  ( Hom f  `  C )  Fn  ( B  X.  B
) )
52 hofcl.h . . . . . . 7  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
53 df-f 5892 . . . . . . 7  |-  ( ( Hom f  `  C ) : ( B  X.  B ) --> U  <->  ( ( Hom f  `  C )  Fn  ( B  X.  B )  /\  ran  ( Hom f  `  C )  C_  U ) )
5451, 52, 53sylanbrc 698 . . . . . 6  |-  ( ph  ->  ( Hom f  `  C ) : ( B  X.  B
) --> U )
5554, 10, 18fovrnd 6806 . . . . 5  |-  ( ph  ->  ( X ( Hom f  `  C ) Y )  e.  U )
5649, 55eqeltrrd 2702 . . . 4  |-  ( ph  ->  ( X H Y )  e.  U )
5748, 1, 2, 8, 21homfval 16352 . . . . 5  |-  ( ph  ->  ( Z ( Hom f  `  C ) W )  =  ( Z H W ) )
5854, 8, 21fovrnd 6806 . . . . 5  |-  ( ph  ->  ( Z ( Hom f  `  C ) W )  e.  U )
5957, 58eqeltrrd 2702 . . . 4  |-  ( ph  ->  ( Z H W )  e.  U )
6048, 1, 2, 6, 16homfval 16352 . . . . 5  |-  ( ph  ->  ( S ( Hom f  `  C ) T )  =  ( S H T ) )
6154, 6, 16fovrnd 6806 . . . . 5  |-  ( ph  ->  ( S ( Hom f  `  C ) T )  e.  U )
6260, 61eqeltrrd 2702 . . . 4  |-  ( ph  ->  ( S H T )  e.  U )
631, 2, 3, 5, 9, 11, 28, 15, 33catcocl 16346 . . . . 5  |-  ( (
ph  /\  f  e.  ( X H Y ) )  ->  ( ( L ( <. X ,  Y >. (comp `  C
) W ) f ) ( <. Z ,  X >. (comp `  C
) W ) K )  e.  ( Z H W ) )
64 eqid 2622 . . . . 5  |-  ( f  e.  ( X H Y )  |->  ( ( L ( <. X ,  Y >. (comp `  C
) W ) f ) ( <. Z ,  X >. (comp `  C
) W ) K ) )  =  ( f  e.  ( X H Y )  |->  ( ( L ( <. X ,  Y >. (comp `  C ) W ) f ) ( <. Z ,  X >. (comp `  C ) W ) K ) )
6563, 64fmptd 6385 . . . 4  |-  ( ph  ->  ( f  e.  ( X H Y ) 
|->  ( ( L (
<. X ,  Y >. (comp `  C ) W ) f ) ( <. Z ,  X >. (comp `  C ) W ) K ) ) : ( X H Y ) --> ( Z H W ) )
664adantr 481 . . . . . 6  |-  ( (
ph  /\  g  e.  ( Z H W ) )  ->  C  e.  Cat )
676adantr 481 . . . . . 6  |-  ( (
ph  /\  g  e.  ( Z H W ) )  ->  S  e.  B )
688adantr 481 . . . . . 6  |-  ( (
ph  /\  g  e.  ( Z H W ) )  ->  Z  e.  B )
6916adantr 481 . . . . . 6  |-  ( (
ph  /\  g  e.  ( Z H W ) )  ->  T  e.  B )
7012adantr 481 . . . . . 6  |-  ( (
ph  /\  g  e.  ( Z H W ) )  ->  P  e.  ( S H Z ) )
7121adantr 481 . . . . . . 7  |-  ( (
ph  /\  g  e.  ( Z H W ) )  ->  W  e.  B )
72 simpr 477 . . . . . . 7  |-  ( (
ph  /\  g  e.  ( Z H W ) )  ->  g  e.  ( Z H W ) )
7323adantr 481 . . . . . . 7  |-  ( (
ph  /\  g  e.  ( Z H W ) )  ->  Q  e.  ( W H T ) )
741, 2, 3, 66, 68, 71, 69, 72, 73catcocl 16346 . . . . . 6  |-  ( (
ph  /\  g  e.  ( Z H W ) )  ->  ( Q
( <. Z ,  W >. (comp `  C ) T ) g )  e.  ( Z H T ) )
751, 2, 3, 66, 67, 68, 69, 70, 74catcocl 16346 . . . . 5  |-  ( (
ph  /\  g  e.  ( Z H W ) )  ->  ( ( Q ( <. Z ,  W >. (comp `  C
) T ) g ) ( <. S ,  Z >. (comp `  C
) T ) P )  e.  ( S H T ) )
76 eqid 2622 . . . . 5  |-  ( g  e.  ( Z H W )  |->  ( ( Q ( <. Z ,  W >. (comp `  C
) T ) g ) ( <. S ,  Z >. (comp `  C
) T ) P ) )  =  ( g  e.  ( Z H W )  |->  ( ( Q ( <. Z ,  W >. (comp `  C ) T ) g ) ( <. S ,  Z >. (comp `  C ) T ) P ) )
7775, 76fmptd 6385 . . . 4  |-  ( ph  ->  ( g  e.  ( Z H W ) 
|->  ( ( Q (
<. Z ,  W >. (comp `  C ) T ) g ) ( <. S ,  Z >. (comp `  C ) T ) P ) ) : ( Z H W ) --> ( S H T ) )
7845, 46, 47, 56, 59, 62, 65, 77setcco 16733 . . 3  |-  ( ph  ->  ( ( g  e.  ( Z H W )  |->  ( ( Q ( <. Z ,  W >. (comp `  C ) T ) g ) ( <. S ,  Z >. (comp `  C ) T ) P ) ) ( <. ( X H Y ) ,  ( Z H W ) >. (comp `  D
) ( S H T ) ) ( f  e.  ( X H Y )  |->  ( ( L ( <. X ,  Y >. (comp `  C ) W ) f ) ( <. Z ,  X >. (comp `  C ) W ) K ) ) )  =  ( ( g  e.  ( Z H W )  |->  ( ( Q ( <. Z ,  W >. (comp `  C
) T ) g ) ( <. S ,  Z >. (comp `  C
) T ) P ) )  o.  (
f  e.  ( X H Y )  |->  ( ( L ( <. X ,  Y >. (comp `  C ) W ) f ) ( <. Z ,  X >. (comp `  C ) W ) K ) ) ) )
79 eqidd 2623 . . . 4  |-  ( ph  ->  ( f  e.  ( X H Y ) 
|->  ( ( L (
<. X ,  Y >. (comp `  C ) W ) f ) ( <. Z ,  X >. (comp `  C ) W ) K ) )  =  ( f  e.  ( X H Y ) 
|->  ( ( L (
<. X ,  Y >. (comp `  C ) W ) f ) ( <. Z ,  X >. (comp `  C ) W ) K ) ) )
80 eqidd 2623 . . . 4  |-  ( ph  ->  ( g  e.  ( Z H W ) 
|->  ( ( Q (
<. Z ,  W >. (comp `  C ) T ) g ) ( <. S ,  Z >. (comp `  C ) T ) P ) )  =  ( g  e.  ( Z H W ) 
|->  ( ( Q (
<. Z ,  W >. (comp `  C ) T ) g ) ( <. S ,  Z >. (comp `  C ) T ) P ) ) )
81 oveq2 6658 . . . . 5  |-  ( g  =  ( ( L ( <. X ,  Y >. (comp `  C ) W ) f ) ( <. Z ,  X >. (comp `  C ) W ) K )  ->  ( Q (
<. Z ,  W >. (comp `  C ) T ) g )  =  ( Q ( <. Z ,  W >. (comp `  C
) T ) ( ( L ( <. X ,  Y >. (comp `  C ) W ) f ) ( <. Z ,  X >. (comp `  C ) W ) K ) ) )
8281oveq1d 6665 . . . 4  |-  ( g  =  ( ( L ( <. X ,  Y >. (comp `  C ) W ) f ) ( <. Z ,  X >. (comp `  C ) W ) K )  ->  ( ( Q ( <. Z ,  W >. (comp `  C ) T ) g ) ( <. S ,  Z >. (comp `  C ) T ) P )  =  ( ( Q ( <. Z ,  W >. (comp `  C ) T ) ( ( L ( <. X ,  Y >. (comp `  C
) W ) f ) ( <. Z ,  X >. (comp `  C
) W ) K ) ) ( <. S ,  Z >. (comp `  C ) T ) P ) )
8363, 79, 80, 82fmptco 6396 . . 3  |-  ( ph  ->  ( ( g  e.  ( Z H W )  |->  ( ( Q ( <. Z ,  W >. (comp `  C ) T ) g ) ( <. S ,  Z >. (comp `  C ) T ) P ) )  o.  ( f  e.  ( X H Y )  |->  ( ( L ( <. X ,  Y >. (comp `  C
) W ) f ) ( <. Z ,  X >. (comp `  C
) W ) K ) ) )  =  ( f  e.  ( X H Y ) 
|->  ( ( Q (
<. Z ,  W >. (comp `  C ) T ) ( ( L (
<. X ,  Y >. (comp `  C ) W ) f ) ( <. Z ,  X >. (comp `  C ) W ) K ) ) (
<. S ,  Z >. (comp `  C ) T ) P ) ) )
8444, 78, 833eqtrd 2660 . 2  |-  ( ph  ->  ( ( P (
<. Z ,  W >. ( 2nd `  M )
<. S ,  T >. ) Q ) ( <.
( X H Y ) ,  ( Z H W ) >.
(comp `  D )
( S H T ) ) ( K ( <. X ,  Y >. ( 2nd `  M
) <. Z ,  W >. ) L ) )  =  ( f  e.  ( X H Y )  |->  ( ( Q ( <. Z ,  W >. (comp `  C ) T ) ( ( L ( <. X ,  Y >. (comp `  C
) W ) f ) ( <. Z ,  X >. (comp `  C
) W ) K ) ) ( <. S ,  Z >. (comp `  C ) T ) P ) ) )
8538, 41, 843eqtr4d 2666 1  |-  ( ph  ->  ( ( K (
<. S ,  Z >. (comp `  C ) X ) P ) ( <. X ,  Y >. ( 2nd `  M )
<. S ,  T >. ) ( Q ( <. Y ,  W >. (comp `  C ) T ) L ) )  =  ( ( P (
<. Z ,  W >. ( 2nd `  M )
<. S ,  T >. ) Q ) ( <.
( X H Y ) ,  ( Z H W ) >.
(comp `  D )
( S H T ) ) ( K ( <. X ,  Y >. ( 2nd `  M
) <. Z ,  W >. ) L ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   <.cop 4183    |-> cmpt 4729    X. cxp 5112   ran crn 5115    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   2ndc2nd 7167   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Hom f chomf 16327  oppCatcoppc 16371   SetCatcsetc 16725  HomFchof 16888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-cat 16329  df-homf 16331  df-setc 16726  df-hof 16890
This theorem is referenced by:  hofcl  16899
  Copyright terms: Public domain W3C validator