| Step | Hyp | Ref
| Expression |
| 1 | | itg2mulc.2 |
. . . . . . 7
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
| 2 | | icossicc 12260 |
. . . . . . 7
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
| 3 | | fss 6056 |
. . . . . . 7
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞)) |
| 4 | 1, 2, 3 | sylancl 694 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) |
| 5 | 4 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝐹:ℝ⟶(0[,]+∞)) |
| 6 | | simpr 477 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝑓 ∈ dom
∫1) |
| 7 | | itg2mulclem.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
| 8 | 7 | rpreccld 11882 |
. . . . . . . 8
⊢ (𝜑 → (1 / 𝐴) ∈
ℝ+) |
| 9 | 8 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (1 /
𝐴) ∈
ℝ+) |
| 10 | 9 | rpred 11872 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (1 /
𝐴) ∈
ℝ) |
| 11 | 6, 10 | i1fmulc 23470 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
((ℝ × {(1 / 𝐴)}) ∘𝑓 ·
𝑓) ∈ dom
∫1) |
| 12 | | itg2ub 23500 |
. . . . . 6
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ ((ℝ × {(1 / 𝐴)}) ∘𝑓 ·
𝑓) ∈ dom
∫1 ∧ ((ℝ × {(1 / 𝐴)}) ∘𝑓 ·
𝑓)
∘𝑟 ≤ 𝐹) → (∫1‘((ℝ
× {(1 / 𝐴)})
∘𝑓 · 𝑓)) ≤ (∫2‘𝐹)) |
| 13 | 12 | 3expia 1267 |
. . . . 5
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ ((ℝ × {(1 / 𝐴)}) ∘𝑓 ·
𝑓) ∈ dom
∫1) → (((ℝ × {(1 / 𝐴)}) ∘𝑓 ·
𝑓)
∘𝑟 ≤ 𝐹 → (∫1‘((ℝ
× {(1 / 𝐴)})
∘𝑓 · 𝑓)) ≤ (∫2‘𝐹))) |
| 14 | 5, 11, 13 | syl2anc 693 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(((ℝ × {(1 / 𝐴)}) ∘𝑓 ·
𝑓)
∘𝑟 ≤ 𝐹 → (∫1‘((ℝ
× {(1 / 𝐴)})
∘𝑓 · 𝑓)) ≤ (∫2‘𝐹))) |
| 15 | | i1ff 23443 |
. . . . . . . . . 10
⊢ (𝑓 ∈ dom ∫1
→ 𝑓:ℝ⟶ℝ) |
| 16 | 15 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝑓:ℝ⟶ℝ) |
| 17 | 16 | ffvelrnda 6359 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝑓‘𝑦) ∈ ℝ) |
| 18 | | rge0ssre 12280 |
. . . . . . . . . . 11
⊢
(0[,)+∞) ⊆ ℝ |
| 19 | | fss 6056 |
. . . . . . . . . . 11
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ) |
| 20 | 1, 18, 19 | sylancl 694 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 21 | 20 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝐹:ℝ⟶ℝ) |
| 22 | 21 | ffvelrnda 6359 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ ℝ) |
| 23 | 7 | rpred 11872 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 24 | 23 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈
ℝ) |
| 25 | 7 | rpgt0d 11875 |
. . . . . . . . 9
⊢ (𝜑 → 0 < 𝐴) |
| 26 | 25 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 0 <
𝐴) |
| 27 | | ledivmul 10899 |
. . . . . . . 8
⊢ (((𝑓‘𝑦) ∈ ℝ ∧ (𝐹‘𝑦) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (((𝑓‘𝑦) / 𝐴) ≤ (𝐹‘𝑦) ↔ (𝑓‘𝑦) ≤ (𝐴 · (𝐹‘𝑦)))) |
| 28 | 17, 22, 24, 26, 27 | syl112anc 1330 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (((𝑓‘𝑦) / 𝐴) ≤ (𝐹‘𝑦) ↔ (𝑓‘𝑦) ≤ (𝐴 · (𝐹‘𝑦)))) |
| 29 | 17 | recnd 10068 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝑓‘𝑦) ∈ ℂ) |
| 30 | 24 | recnd 10068 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈
ℂ) |
| 31 | 7 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝐴 ∈
ℝ+) |
| 32 | 31 | rpne0d 11877 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝐴 ≠ 0) |
| 33 | 32 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ≠ 0) |
| 34 | 29, 30, 33 | divrec2d 10805 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → ((𝑓‘𝑦) / 𝐴) = ((1 / 𝐴) · (𝑓‘𝑦))) |
| 35 | 34 | breq1d 4663 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (((𝑓‘𝑦) / 𝐴) ≤ (𝐹‘𝑦) ↔ ((1 / 𝐴) · (𝑓‘𝑦)) ≤ (𝐹‘𝑦))) |
| 36 | 28, 35 | bitr3d 270 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → ((𝑓‘𝑦) ≤ (𝐴 · (𝐹‘𝑦)) ↔ ((1 / 𝐴) · (𝑓‘𝑦)) ≤ (𝐹‘𝑦))) |
| 37 | 36 | ralbidva 2985 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(∀𝑦 ∈ ℝ
(𝑓‘𝑦) ≤ (𝐴 · (𝐹‘𝑦)) ↔ ∀𝑦 ∈ ℝ ((1 / 𝐴) · (𝑓‘𝑦)) ≤ (𝐹‘𝑦))) |
| 38 | | reex 10027 |
. . . . . . 7
⊢ ℝ
∈ V |
| 39 | 38 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → ℝ
∈ V) |
| 40 | | ovexd 6680 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝐴 · (𝐹‘𝑦)) ∈ V) |
| 41 | 16 | feqmptd 6249 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝑓 = (𝑦 ∈ ℝ ↦ (𝑓‘𝑦))) |
| 42 | 7 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈
ℝ+) |
| 43 | | fconstmpt 5163 |
. . . . . . . 8
⊢ (ℝ
× {𝐴}) = (𝑦 ∈ ℝ ↦ 𝐴) |
| 44 | 43 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(ℝ × {𝐴}) =
(𝑦 ∈ ℝ ↦
𝐴)) |
| 45 | 1 | feqmptd 6249 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹‘𝑦))) |
| 46 | 45 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹‘𝑦))) |
| 47 | 39, 42, 22, 44, 46 | offval2 6914 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
((ℝ × {𝐴})
∘𝑓 · 𝐹) = (𝑦 ∈ ℝ ↦ (𝐴 · (𝐹‘𝑦)))) |
| 48 | 39, 17, 40, 41, 47 | ofrfval2 6915 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑓 ∘𝑟
≤ ((ℝ × {𝐴})
∘𝑓 · 𝐹) ↔ ∀𝑦 ∈ ℝ (𝑓‘𝑦) ≤ (𝐴 · (𝐹‘𝑦)))) |
| 49 | | ovexd 6680 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → ((1 /
𝐴) · (𝑓‘𝑦)) ∈ V) |
| 50 | 8 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (1 /
𝐴) ∈
ℝ+) |
| 51 | | fconstmpt 5163 |
. . . . . . . 8
⊢ (ℝ
× {(1 / 𝐴)}) = (𝑦 ∈ ℝ ↦ (1 /
𝐴)) |
| 52 | 51 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(ℝ × {(1 / 𝐴)})
= (𝑦 ∈ ℝ ↦
(1 / 𝐴))) |
| 53 | 39, 50, 17, 52, 41 | offval2 6914 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
((ℝ × {(1 / 𝐴)}) ∘𝑓 ·
𝑓) = (𝑦 ∈ ℝ ↦ ((1 / 𝐴) · (𝑓‘𝑦)))) |
| 54 | 39, 49, 22, 53, 46 | ofrfval2 6915 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(((ℝ × {(1 / 𝐴)}) ∘𝑓 ·
𝑓)
∘𝑟 ≤ 𝐹 ↔ ∀𝑦 ∈ ℝ ((1 / 𝐴) · (𝑓‘𝑦)) ≤ (𝐹‘𝑦))) |
| 55 | 37, 48, 54 | 3bitr4d 300 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑓 ∘𝑟
≤ ((ℝ × {𝐴})
∘𝑓 · 𝐹) ↔ ((ℝ × {(1 / 𝐴)}) ∘𝑓
· 𝑓)
∘𝑟 ≤ 𝐹)) |
| 56 | 6, 10 | itg1mulc 23471 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(∫1‘((ℝ × {(1 / 𝐴)}) ∘𝑓 ·
𝑓)) = ((1 / 𝐴) ·
(∫1‘𝑓))) |
| 57 | | itg1cl 23452 |
. . . . . . . . . 10
⊢ (𝑓 ∈ dom ∫1
→ (∫1‘𝑓) ∈ ℝ) |
| 58 | 57 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(∫1‘𝑓)
∈ ℝ) |
| 59 | 58 | recnd 10068 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(∫1‘𝑓)
∈ ℂ) |
| 60 | 23 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝐴 ∈
ℝ) |
| 61 | 60 | recnd 10068 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 𝐴 ∈
ℂ) |
| 62 | 59, 61, 32 | divrec2d 10805 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
((∫1‘𝑓) / 𝐴) = ((1 / 𝐴) · (∫1‘𝑓))) |
| 63 | 56, 62 | eqtr4d 2659 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(∫1‘((ℝ × {(1 / 𝐴)}) ∘𝑓 ·
𝑓)) =
((∫1‘𝑓) / 𝐴)) |
| 64 | 63 | breq1d 4663 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
((∫1‘((ℝ × {(1 / 𝐴)}) ∘𝑓 ·
𝑓)) ≤
(∫2‘𝐹)
↔ ((∫1‘𝑓) / 𝐴) ≤ (∫2‘𝐹))) |
| 65 | | itg2mulc.3 |
. . . . . . 7
⊢ (𝜑 →
(∫2‘𝐹)
∈ ℝ) |
| 66 | 65 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(∫2‘𝐹)
∈ ℝ) |
| 67 | 25 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → 0 <
𝐴) |
| 68 | | ledivmul 10899 |
. . . . . 6
⊢
(((∫1‘𝑓) ∈ ℝ ∧
(∫2‘𝐹)
∈ ℝ ∧ (𝐴
∈ ℝ ∧ 0 < 𝐴)) → (((∫1‘𝑓) / 𝐴) ≤ (∫2‘𝐹) ↔
(∫1‘𝑓)
≤ (𝐴 ·
(∫2‘𝐹)))) |
| 69 | 58, 66, 60, 67, 68 | syl112anc 1330 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(((∫1‘𝑓) / 𝐴) ≤ (∫2‘𝐹) ↔
(∫1‘𝑓)
≤ (𝐴 ·
(∫2‘𝐹)))) |
| 70 | 64, 69 | bitr2d 269 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
((∫1‘𝑓) ≤ (𝐴 · (∫2‘𝐹)) ↔
(∫1‘((ℝ × {(1 / 𝐴)}) ∘𝑓 ·
𝑓)) ≤
(∫2‘𝐹))) |
| 71 | 14, 55, 70 | 3imtr4d 283 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑓 ∘𝑟
≤ ((ℝ × {𝐴})
∘𝑓 · 𝐹) → (∫1‘𝑓) ≤ (𝐴 · (∫2‘𝐹)))) |
| 72 | 71 | ralrimiva 2966 |
. 2
⊢ (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓 ∘𝑟
≤ ((ℝ × {𝐴})
∘𝑓 · 𝐹) → (∫1‘𝑓) ≤ (𝐴 · (∫2‘𝐹)))) |
| 73 | | ge0mulcl 12285 |
. . . . . 6
⊢ ((𝑥 ∈ (0[,)+∞) ∧
𝑦 ∈ (0[,)+∞))
→ (𝑥 · 𝑦) ∈
(0[,)+∞)) |
| 74 | 73 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) →
(𝑥 · 𝑦) ∈
(0[,)+∞)) |
| 75 | | fconstg 6092 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ+
→ (ℝ × {𝐴}):ℝ⟶{𝐴}) |
| 76 | 7, 75 | syl 17 |
. . . . . 6
⊢ (𝜑 → (ℝ × {𝐴}):ℝ⟶{𝐴}) |
| 77 | | rpre 11839 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ+
→ 𝐴 ∈
ℝ) |
| 78 | | rpge0 11845 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ+
→ 0 ≤ 𝐴) |
| 79 | | elrege0 12278 |
. . . . . . . . 9
⊢ (𝐴 ∈ (0[,)+∞) ↔
(𝐴 ∈ ℝ ∧ 0
≤ 𝐴)) |
| 80 | 77, 78, 79 | sylanbrc 698 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ+
→ 𝐴 ∈
(0[,)+∞)) |
| 81 | 7, 80 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (0[,)+∞)) |
| 82 | 81 | snssd 4340 |
. . . . . 6
⊢ (𝜑 → {𝐴} ⊆ (0[,)+∞)) |
| 83 | 76, 82 | fssd 6057 |
. . . . 5
⊢ (𝜑 → (ℝ × {𝐴}):ℝ⟶(0[,)+∞)) |
| 84 | 38 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ∈
V) |
| 85 | | inidm 3822 |
. . . . 5
⊢ (ℝ
∩ ℝ) = ℝ |
| 86 | 74, 83, 1, 84, 84, 85 | off 6912 |
. . . 4
⊢ (𝜑 → ((ℝ × {𝐴}) ∘𝑓
· 𝐹):ℝ⟶(0[,)+∞)) |
| 87 | | fss 6056 |
. . . 4
⊢
((((ℝ × {𝐴}) ∘𝑓 ·
𝐹):ℝ⟶(0[,)+∞) ∧
(0[,)+∞) ⊆ (0[,]+∞)) → ((ℝ × {𝐴}) ∘𝑓
· 𝐹):ℝ⟶(0[,]+∞)) |
| 88 | 86, 2, 87 | sylancl 694 |
. . 3
⊢ (𝜑 → ((ℝ × {𝐴}) ∘𝑓
· 𝐹):ℝ⟶(0[,]+∞)) |
| 89 | 23, 65 | remulcld 10070 |
. . . 4
⊢ (𝜑 → (𝐴 · (∫2‘𝐹)) ∈
ℝ) |
| 90 | 89 | rexrd 10089 |
. . 3
⊢ (𝜑 → (𝐴 · (∫2‘𝐹)) ∈
ℝ*) |
| 91 | | itg2leub 23501 |
. . 3
⊢
((((ℝ × {𝐴}) ∘𝑓 ·
𝐹):ℝ⟶(0[,]+∞) ∧ (𝐴 ·
(∫2‘𝐹)) ∈ ℝ*) →
((∫2‘((ℝ × {𝐴}) ∘𝑓 ·
𝐹)) ≤ (𝐴 · (∫2‘𝐹)) ↔ ∀𝑓 ∈ dom
∫1(𝑓
∘𝑟 ≤ ((ℝ × {𝐴}) ∘𝑓 ·
𝐹) →
(∫1‘𝑓)
≤ (𝐴 ·
(∫2‘𝐹))))) |
| 92 | 88, 90, 91 | syl2anc 693 |
. 2
⊢ (𝜑 →
((∫2‘((ℝ × {𝐴}) ∘𝑓 ·
𝐹)) ≤ (𝐴 · (∫2‘𝐹)) ↔ ∀𝑓 ∈ dom
∫1(𝑓
∘𝑟 ≤ ((ℝ × {𝐴}) ∘𝑓 ·
𝐹) →
(∫1‘𝑓)
≤ (𝐴 ·
(∫2‘𝐹))))) |
| 93 | 72, 92 | mpbird 247 |
1
⊢ (𝜑 →
(∫2‘((ℝ × {𝐴}) ∘𝑓 ·
𝐹)) ≤ (𝐴 · (∫2‘𝐹))) |