MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2mulclem Structured version   Visualization version   GIF version

Theorem itg2mulclem 23513
Description: Lemma for itg2mulc 23514. (Contributed by Mario Carneiro, 8-Jul-2014.)
Hypotheses
Ref Expression
itg2mulc.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2mulc.3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2mulclem.4 (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
itg2mulclem (𝜑 → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ≤ (𝐴 · (∫2𝐹)))

Proof of Theorem itg2mulclem
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2mulc.2 . . . . . . 7 (𝜑𝐹:ℝ⟶(0[,)+∞))
2 icossicc 12260 . . . . . . 7 (0[,)+∞) ⊆ (0[,]+∞)
3 fss 6056 . . . . . . 7 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞))
41, 2, 3sylancl 694 . . . . . 6 (𝜑𝐹:ℝ⟶(0[,]+∞))
54adantr 481 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → 𝐹:ℝ⟶(0[,]+∞))
6 simpr 477 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → 𝑓 ∈ dom ∫1)
7 itg2mulclem.4 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
87rpreccld 11882 . . . . . . . 8 (𝜑 → (1 / 𝐴) ∈ ℝ+)
98adantr 481 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → (1 / 𝐴) ∈ ℝ+)
109rpred 11872 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → (1 / 𝐴) ∈ ℝ)
116, 10i1fmulc 23470 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → ((ℝ × {(1 / 𝐴)}) ∘𝑓 · 𝑓) ∈ dom ∫1)
12 itg2ub 23500 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ ((ℝ × {(1 / 𝐴)}) ∘𝑓 · 𝑓) ∈ dom ∫1 ∧ ((ℝ × {(1 / 𝐴)}) ∘𝑓 · 𝑓) ∘𝑟𝐹) → (∫1‘((ℝ × {(1 / 𝐴)}) ∘𝑓 · 𝑓)) ≤ (∫2𝐹))
13123expia 1267 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ ((ℝ × {(1 / 𝐴)}) ∘𝑓 · 𝑓) ∈ dom ∫1) → (((ℝ × {(1 / 𝐴)}) ∘𝑓 · 𝑓) ∘𝑟𝐹 → (∫1‘((ℝ × {(1 / 𝐴)}) ∘𝑓 · 𝑓)) ≤ (∫2𝐹)))
145, 11, 13syl2anc 693 . . . 4 ((𝜑𝑓 ∈ dom ∫1) → (((ℝ × {(1 / 𝐴)}) ∘𝑓 · 𝑓) ∘𝑟𝐹 → (∫1‘((ℝ × {(1 / 𝐴)}) ∘𝑓 · 𝑓)) ≤ (∫2𝐹)))
15 i1ff 23443 . . . . . . . . . 10 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
1615adantl 482 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → 𝑓:ℝ⟶ℝ)
1716ffvelrnda 6359 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝑓𝑦) ∈ ℝ)
18 rge0ssre 12280 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
19 fss 6056 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
201, 18, 19sylancl 694 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
2120adantr 481 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → 𝐹:ℝ⟶ℝ)
2221ffvelrnda 6359 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
237rpred 11872 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
2423ad2antrr 762 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ ℝ)
257rpgt0d 11875 . . . . . . . . 9 (𝜑 → 0 < 𝐴)
2625ad2antrr 762 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 0 < 𝐴)
27 ledivmul 10899 . . . . . . . 8 (((𝑓𝑦) ∈ ℝ ∧ (𝐹𝑦) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (((𝑓𝑦) / 𝐴) ≤ (𝐹𝑦) ↔ (𝑓𝑦) ≤ (𝐴 · (𝐹𝑦))))
2817, 22, 24, 26, 27syl112anc 1330 . . . . . . 7 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (((𝑓𝑦) / 𝐴) ≤ (𝐹𝑦) ↔ (𝑓𝑦) ≤ (𝐴 · (𝐹𝑦))))
2917recnd 10068 . . . . . . . . 9 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝑓𝑦) ∈ ℂ)
3024recnd 10068 . . . . . . . . 9 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
317adantr 481 . . . . . . . . . . 11 ((𝜑𝑓 ∈ dom ∫1) → 𝐴 ∈ ℝ+)
3231rpne0d 11877 . . . . . . . . . 10 ((𝜑𝑓 ∈ dom ∫1) → 𝐴 ≠ 0)
3332adantr 481 . . . . . . . . 9 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ≠ 0)
3429, 30, 33divrec2d 10805 . . . . . . . 8 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → ((𝑓𝑦) / 𝐴) = ((1 / 𝐴) · (𝑓𝑦)))
3534breq1d 4663 . . . . . . 7 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (((𝑓𝑦) / 𝐴) ≤ (𝐹𝑦) ↔ ((1 / 𝐴) · (𝑓𝑦)) ≤ (𝐹𝑦)))
3628, 35bitr3d 270 . . . . . 6 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → ((𝑓𝑦) ≤ (𝐴 · (𝐹𝑦)) ↔ ((1 / 𝐴) · (𝑓𝑦)) ≤ (𝐹𝑦)))
3736ralbidva 2985 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (∀𝑦 ∈ ℝ (𝑓𝑦) ≤ (𝐴 · (𝐹𝑦)) ↔ ∀𝑦 ∈ ℝ ((1 / 𝐴) · (𝑓𝑦)) ≤ (𝐹𝑦)))
38 reex 10027 . . . . . . 7 ℝ ∈ V
3938a1i 11 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → ℝ ∈ V)
40 ovexd 6680 . . . . . 6 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (𝐴 · (𝐹𝑦)) ∈ V)
4116feqmptd 6249 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → 𝑓 = (𝑦 ∈ ℝ ↦ (𝑓𝑦)))
427ad2antrr 762 . . . . . . 7 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ ℝ+)
43 fconstmpt 5163 . . . . . . . 8 (ℝ × {𝐴}) = (𝑦 ∈ ℝ ↦ 𝐴)
4443a1i 11 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → (ℝ × {𝐴}) = (𝑦 ∈ ℝ ↦ 𝐴))
451feqmptd 6249 . . . . . . . 8 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
4645adantr 481 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
4739, 42, 22, 44, 46offval2 6914 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹) = (𝑦 ∈ ℝ ↦ (𝐴 · (𝐹𝑦))))
4839, 17, 40, 41, 47ofrfval2 6915 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (𝑓𝑟 ≤ ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ↔ ∀𝑦 ∈ ℝ (𝑓𝑦) ≤ (𝐴 · (𝐹𝑦))))
49 ovexd 6680 . . . . . 6 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → ((1 / 𝐴) · (𝑓𝑦)) ∈ V)
508ad2antrr 762 . . . . . . 7 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑦 ∈ ℝ) → (1 / 𝐴) ∈ ℝ+)
51 fconstmpt 5163 . . . . . . . 8 (ℝ × {(1 / 𝐴)}) = (𝑦 ∈ ℝ ↦ (1 / 𝐴))
5251a1i 11 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → (ℝ × {(1 / 𝐴)}) = (𝑦 ∈ ℝ ↦ (1 / 𝐴)))
5339, 50, 17, 52, 41offval2 6914 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → ((ℝ × {(1 / 𝐴)}) ∘𝑓 · 𝑓) = (𝑦 ∈ ℝ ↦ ((1 / 𝐴) · (𝑓𝑦))))
5439, 49, 22, 53, 46ofrfval2 6915 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (((ℝ × {(1 / 𝐴)}) ∘𝑓 · 𝑓) ∘𝑟𝐹 ↔ ∀𝑦 ∈ ℝ ((1 / 𝐴) · (𝑓𝑦)) ≤ (𝐹𝑦)))
5537, 48, 543bitr4d 300 . . . 4 ((𝜑𝑓 ∈ dom ∫1) → (𝑓𝑟 ≤ ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ↔ ((ℝ × {(1 / 𝐴)}) ∘𝑓 · 𝑓) ∘𝑟𝐹))
566, 10itg1mulc 23471 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → (∫1‘((ℝ × {(1 / 𝐴)}) ∘𝑓 · 𝑓)) = ((1 / 𝐴) · (∫1𝑓)))
57 itg1cl 23452 . . . . . . . . . 10 (𝑓 ∈ dom ∫1 → (∫1𝑓) ∈ ℝ)
5857adantl 482 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → (∫1𝑓) ∈ ℝ)
5958recnd 10068 . . . . . . . 8 ((𝜑𝑓 ∈ dom ∫1) → (∫1𝑓) ∈ ℂ)
6023adantr 481 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → 𝐴 ∈ ℝ)
6160recnd 10068 . . . . . . . 8 ((𝜑𝑓 ∈ dom ∫1) → 𝐴 ∈ ℂ)
6259, 61, 32divrec2d 10805 . . . . . . 7 ((𝜑𝑓 ∈ dom ∫1) → ((∫1𝑓) / 𝐴) = ((1 / 𝐴) · (∫1𝑓)))
6356, 62eqtr4d 2659 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → (∫1‘((ℝ × {(1 / 𝐴)}) ∘𝑓 · 𝑓)) = ((∫1𝑓) / 𝐴))
6463breq1d 4663 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → ((∫1‘((ℝ × {(1 / 𝐴)}) ∘𝑓 · 𝑓)) ≤ (∫2𝐹) ↔ ((∫1𝑓) / 𝐴) ≤ (∫2𝐹)))
65 itg2mulc.3 . . . . . . 7 (𝜑 → (∫2𝐹) ∈ ℝ)
6665adantr 481 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → (∫2𝐹) ∈ ℝ)
6725adantr 481 . . . . . 6 ((𝜑𝑓 ∈ dom ∫1) → 0 < 𝐴)
68 ledivmul 10899 . . . . . 6 (((∫1𝑓) ∈ ℝ ∧ (∫2𝐹) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (((∫1𝑓) / 𝐴) ≤ (∫2𝐹) ↔ (∫1𝑓) ≤ (𝐴 · (∫2𝐹))))
6958, 66, 60, 67, 68syl112anc 1330 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (((∫1𝑓) / 𝐴) ≤ (∫2𝐹) ↔ (∫1𝑓) ≤ (𝐴 · (∫2𝐹))))
7064, 69bitr2d 269 . . . 4 ((𝜑𝑓 ∈ dom ∫1) → ((∫1𝑓) ≤ (𝐴 · (∫2𝐹)) ↔ (∫1‘((ℝ × {(1 / 𝐴)}) ∘𝑓 · 𝑓)) ≤ (∫2𝐹)))
7114, 55, 703imtr4d 283 . . 3 ((𝜑𝑓 ∈ dom ∫1) → (𝑓𝑟 ≤ ((ℝ × {𝐴}) ∘𝑓 · 𝐹) → (∫1𝑓) ≤ (𝐴 · (∫2𝐹))))
7271ralrimiva 2966 . 2 (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓𝑟 ≤ ((ℝ × {𝐴}) ∘𝑓 · 𝐹) → (∫1𝑓) ≤ (𝐴 · (∫2𝐹))))
73 ge0mulcl 12285 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞))
7473adantl 482 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 · 𝑦) ∈ (0[,)+∞))
75 fconstg 6092 . . . . . . 7 (𝐴 ∈ ℝ+ → (ℝ × {𝐴}):ℝ⟶{𝐴})
767, 75syl 17 . . . . . 6 (𝜑 → (ℝ × {𝐴}):ℝ⟶{𝐴})
77 rpre 11839 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
78 rpge0 11845 . . . . . . . . 9 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
79 elrege0 12278 . . . . . . . . 9 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
8077, 78, 79sylanbrc 698 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ∈ (0[,)+∞))
817, 80syl 17 . . . . . . 7 (𝜑𝐴 ∈ (0[,)+∞))
8281snssd 4340 . . . . . 6 (𝜑 → {𝐴} ⊆ (0[,)+∞))
8376, 82fssd 6057 . . . . 5 (𝜑 → (ℝ × {𝐴}):ℝ⟶(0[,)+∞))
8438a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
85 inidm 3822 . . . . 5 (ℝ ∩ ℝ) = ℝ
8674, 83, 1, 84, 84, 85off 6912 . . . 4 (𝜑 → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶(0[,)+∞))
87 fss 6056 . . . 4 ((((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶(0[,]+∞))
8886, 2, 87sylancl 694 . . 3 (𝜑 → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶(0[,]+∞))
8923, 65remulcld 10070 . . . 4 (𝜑 → (𝐴 · (∫2𝐹)) ∈ ℝ)
9089rexrd 10089 . . 3 (𝜑 → (𝐴 · (∫2𝐹)) ∈ ℝ*)
91 itg2leub 23501 . . 3 ((((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶(0[,]+∞) ∧ (𝐴 · (∫2𝐹)) ∈ ℝ*) → ((∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ↔ ∀𝑓 ∈ dom ∫1(𝑓𝑟 ≤ ((ℝ × {𝐴}) ∘𝑓 · 𝐹) → (∫1𝑓) ≤ (𝐴 · (∫2𝐹)))))
9288, 90, 91syl2anc 693 . 2 (𝜑 → ((∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ↔ ∀𝑓 ∈ dom ∫1(𝑓𝑟 ≤ ((ℝ × {𝐴}) ∘𝑓 · 𝐹) → (∫1𝑓) ≤ (𝐴 · (∫2𝐹)))))
9372, 92mpbird 247 1 (𝜑 → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ≤ (𝐴 · (∫2𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  wss 3574  {csn 4177   class class class wbr 4653  cmpt 4729   × cxp 5112  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  𝑟 cofr 6896  cr 9935  0cc0 9936  1c1 9937   · cmul 9941  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075   / cdiv 10684  +crp 11832  [,)cico 12177  [,]cicc 12178  1citg1 23384  2citg2 23385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390
This theorem is referenced by:  itg2mulc  23514
  Copyright terms: Public domain W3C validator