| Step | Hyp | Ref
| Expression |
| 1 | | idlimc.x |
. 2
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 2 | | simpr 477 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈
ℝ+) |
| 3 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 4 | | idlimc.f |
. . . . . . . . . . . . . . 15
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑥) |
| 5 | 4 | fvmpt2 6291 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝑥) |
| 6 | 3, 3, 5 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝑥) |
| 7 | 6 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) − 𝑋) = (𝑥 − 𝑋)) |
| 8 | 7 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘((𝐹‘𝑥) − 𝑋)) = (abs‘(𝑥 − 𝑋))) |
| 9 | 8 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (abs‘(𝑥 − 𝑋)) < 𝑤) → (abs‘((𝐹‘𝑥) − 𝑋)) = (abs‘(𝑥 − 𝑋))) |
| 10 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (abs‘(𝑥 − 𝑋)) < 𝑤) → (abs‘(𝑥 − 𝑋)) < 𝑤) |
| 11 | 9, 10 | eqbrtrd 4675 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (abs‘(𝑥 − 𝑋)) < 𝑤) → (abs‘((𝐹‘𝑥) − 𝑋)) < 𝑤) |
| 12 | 11 | adantrl 752 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 ≠ 𝑋 ∧ (abs‘(𝑥 − 𝑋)) < 𝑤)) → (abs‘((𝐹‘𝑥) − 𝑋)) < 𝑤) |
| 13 | 12 | ex 450 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ≠ 𝑋 ∧ (abs‘(𝑥 − 𝑋)) < 𝑤) → (abs‘((𝐹‘𝑥) − 𝑋)) < 𝑤)) |
| 14 | 13 | adantlr 751 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ≠ 𝑋 ∧ (abs‘(𝑥 − 𝑋)) < 𝑤) → (abs‘((𝐹‘𝑥) − 𝑋)) < 𝑤)) |
| 15 | 14 | ralrimiva 2966 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) →
∀𝑥 ∈ 𝐴 ((𝑥 ≠ 𝑋 ∧ (abs‘(𝑥 − 𝑋)) < 𝑤) → (abs‘((𝐹‘𝑥) − 𝑋)) < 𝑤)) |
| 16 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑧𝑥 |
| 17 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑧𝑋 |
| 18 | 16, 17 | nfne 2894 |
. . . . . . . 8
⊢
Ⅎ𝑧 𝑥 ≠ 𝑋 |
| 19 | | nfv 1843 |
. . . . . . . 8
⊢
Ⅎ𝑧(abs‘(𝑥 − 𝑋)) < 𝑤 |
| 20 | 18, 19 | nfan 1828 |
. . . . . . 7
⊢
Ⅎ𝑧(𝑥 ≠ 𝑋 ∧ (abs‘(𝑥 − 𝑋)) < 𝑤) |
| 21 | | nfv 1843 |
. . . . . . 7
⊢
Ⅎ𝑧(abs‘((𝐹‘𝑥) − 𝑋)) < 𝑤 |
| 22 | 20, 21 | nfim 1825 |
. . . . . 6
⊢
Ⅎ𝑧((𝑥 ≠ 𝑋 ∧ (abs‘(𝑥 − 𝑋)) < 𝑤) → (abs‘((𝐹‘𝑥) − 𝑋)) < 𝑤) |
| 23 | | nfv 1843 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑧 ≠ 𝑋 ∧ (abs‘(𝑧 − 𝑋)) < 𝑤) |
| 24 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑥abs |
| 25 | | nfmpt1 4747 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝑥) |
| 26 | 4, 25 | nfcxfr 2762 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝐹 |
| 27 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝑧 |
| 28 | 26, 27 | nffv 6198 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝐹‘𝑧) |
| 29 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑥
− |
| 30 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝑋 |
| 31 | 28, 29, 30 | nfov 6676 |
. . . . . . . . 9
⊢
Ⅎ𝑥((𝐹‘𝑧) − 𝑋) |
| 32 | 24, 31 | nffv 6198 |
. . . . . . . 8
⊢
Ⅎ𝑥(abs‘((𝐹‘𝑧) − 𝑋)) |
| 33 | | nfcv 2764 |
. . . . . . . 8
⊢
Ⅎ𝑥
< |
| 34 | | nfcv 2764 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑤 |
| 35 | 32, 33, 34 | nfbr 4699 |
. . . . . . 7
⊢
Ⅎ𝑥(abs‘((𝐹‘𝑧) − 𝑋)) < 𝑤 |
| 36 | 23, 35 | nfim 1825 |
. . . . . 6
⊢
Ⅎ𝑥((𝑧 ≠ 𝑋 ∧ (abs‘(𝑧 − 𝑋)) < 𝑤) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑤) |
| 37 | | neeq1 2856 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 ≠ 𝑋 ↔ 𝑧 ≠ 𝑋)) |
| 38 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝑥 − 𝑋) = (𝑧 − 𝑋)) |
| 39 | 38 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (abs‘(𝑥 − 𝑋)) = (abs‘(𝑧 − 𝑋))) |
| 40 | 39 | breq1d 4663 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((abs‘(𝑥 − 𝑋)) < 𝑤 ↔ (abs‘(𝑧 − 𝑋)) < 𝑤)) |
| 41 | 37, 40 | anbi12d 747 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝑥 ≠ 𝑋 ∧ (abs‘(𝑥 − 𝑋)) < 𝑤) ↔ (𝑧 ≠ 𝑋 ∧ (abs‘(𝑧 − 𝑋)) < 𝑤))) |
| 42 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
| 43 | 42 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) − 𝑋) = ((𝐹‘𝑧) − 𝑋)) |
| 44 | 43 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (abs‘((𝐹‘𝑥) − 𝑋)) = (abs‘((𝐹‘𝑧) − 𝑋))) |
| 45 | 44 | breq1d 4663 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((abs‘((𝐹‘𝑥) − 𝑋)) < 𝑤 ↔ (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑤)) |
| 46 | 41, 45 | imbi12d 334 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (((𝑥 ≠ 𝑋 ∧ (abs‘(𝑥 − 𝑋)) < 𝑤) → (abs‘((𝐹‘𝑥) − 𝑋)) < 𝑤) ↔ ((𝑧 ≠ 𝑋 ∧ (abs‘(𝑧 − 𝑋)) < 𝑤) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑤))) |
| 47 | 22, 36, 46 | cbvral 3167 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ((𝑥 ≠ 𝑋 ∧ (abs‘(𝑥 − 𝑋)) < 𝑤) → (abs‘((𝐹‘𝑥) − 𝑋)) < 𝑤) ↔ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝑋 ∧ (abs‘(𝑧 − 𝑋)) < 𝑤) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑤)) |
| 48 | 15, 47 | sylib 208 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) →
∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝑋 ∧ (abs‘(𝑧 − 𝑋)) < 𝑤) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑤)) |
| 49 | | breq2 4657 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → ((abs‘(𝑧 − 𝑋)) < 𝑦 ↔ (abs‘(𝑧 − 𝑋)) < 𝑤)) |
| 50 | 49 | anbi2d 740 |
. . . . . . 7
⊢ (𝑦 = 𝑤 → ((𝑧 ≠ 𝑋 ∧ (abs‘(𝑧 − 𝑋)) < 𝑦) ↔ (𝑧 ≠ 𝑋 ∧ (abs‘(𝑧 − 𝑋)) < 𝑤))) |
| 51 | 50 | imbi1d 331 |
. . . . . 6
⊢ (𝑦 = 𝑤 → (((𝑧 ≠ 𝑋 ∧ (abs‘(𝑧 − 𝑋)) < 𝑦) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑤) ↔ ((𝑧 ≠ 𝑋 ∧ (abs‘(𝑧 − 𝑋)) < 𝑤) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑤))) |
| 52 | 51 | ralbidv 2986 |
. . . . 5
⊢ (𝑦 = 𝑤 → (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝑋 ∧ (abs‘(𝑧 − 𝑋)) < 𝑦) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑤) ↔ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝑋 ∧ (abs‘(𝑧 − 𝑋)) < 𝑤) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑤))) |
| 53 | 52 | rspcev 3309 |
. . . 4
⊢ ((𝑤 ∈ ℝ+
∧ ∀𝑧 ∈
𝐴 ((𝑧 ≠ 𝑋 ∧ (abs‘(𝑧 − 𝑋)) < 𝑤) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑤)) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝑋 ∧ (abs‘(𝑧 − 𝑋)) < 𝑦) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑤)) |
| 54 | 2, 48, 53 | syl2anc 693 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) →
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝑋 ∧ (abs‘(𝑧 − 𝑋)) < 𝑦) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑤)) |
| 55 | 54 | ralrimiva 2966 |
. 2
⊢ (𝜑 → ∀𝑤 ∈ ℝ+ ∃𝑦 ∈ ℝ+
∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝑋 ∧ (abs‘(𝑧 − 𝑋)) < 𝑦) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑤)) |
| 56 | | idlimc.a |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| 57 | 56 | sselda 3603 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℂ) |
| 58 | 57, 4 | fmptd 6385 |
. . 3
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| 59 | 58, 56, 1 | ellimc3 23643 |
. 2
⊢ (𝜑 → (𝑋 ∈ (𝐹 limℂ 𝑋) ↔ (𝑋 ∈ ℂ ∧ ∀𝑤 ∈ ℝ+
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝑋 ∧ (abs‘(𝑧 − 𝑋)) < 𝑦) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑤)))) |
| 60 | 1, 55, 59 | mpbir2and 957 |
1
⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝑋)) |