Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem60 Structured version   Visualization version   GIF version

Theorem fourierdlem60 40383
Description: Given a differentiable function 𝐹, with finite limit of the derivative at 𝐴 the derived function 𝐻 has a limit at 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem60.a (𝜑𝐴 ∈ ℝ)
fourierdlem60.b (𝜑𝐵 ∈ ℝ)
fourierdlem60.altb (𝜑𝐴 < 𝐵)
fourierdlem60.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
fourierdlem60.y (𝜑𝑌 ∈ (𝐹 lim 𝐵))
fourierdlem60.g 𝐺 = (ℝ D 𝐹)
fourierdlem60.domg (𝜑 → dom 𝐺 = (𝐴(,)𝐵))
fourierdlem60.e (𝜑𝐸 ∈ (𝐺 lim 𝐵))
fourierdlem60.h 𝐻 = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (((𝐹‘(𝐵 + 𝑠)) − 𝑌) / 𝑠))
fourierdlem60.n 𝑁 = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))
fourierdlem60.d 𝐷 = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠)
Assertion
Ref Expression
fourierdlem60 (𝜑𝐸 ∈ (𝐻 lim 0))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐷,𝑠   𝐸,𝑠   𝐹,𝑠   𝐺,𝑠   𝑁,𝑠   𝑌,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐻(𝑠)

Proof of Theorem fourierdlem60
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem60.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 fourierdlem60.b . . . . 5 (𝜑𝐵 ∈ ℝ)
31, 2resubcld 10458 . . . 4 (𝜑 → (𝐴𝐵) ∈ ℝ)
43rexrd 10089 . . 3 (𝜑 → (𝐴𝐵) ∈ ℝ*)
5 0red 10041 . . 3 (𝜑 → 0 ∈ ℝ)
6 fourierdlem60.altb . . . 4 (𝜑𝐴 < 𝐵)
71, 2sublt0d 10653 . . . 4 (𝜑 → ((𝐴𝐵) < 0 ↔ 𝐴 < 𝐵))
86, 7mpbird 247 . . 3 (𝜑 → (𝐴𝐵) < 0)
9 fourierdlem60.f . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
109adantr 481 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
111rexrd 10089 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1211adantr 481 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐴 ∈ ℝ*)
132rexrd 10089 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
1413adantr 481 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐵 ∈ ℝ*)
152adantr 481 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐵 ∈ ℝ)
16 elioore 12205 . . . . . . . . 9 (𝑠 ∈ ((𝐴𝐵)(,)0) → 𝑠 ∈ ℝ)
1716adantl 482 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝑠 ∈ ℝ)
1815, 17readdcld 10069 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + 𝑠) ∈ ℝ)
192recnd 10068 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
201recnd 10068 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
2119, 20pncan3d 10395 . . . . . . . . . 10 (𝜑 → (𝐵 + (𝐴𝐵)) = 𝐴)
2221eqcomd 2628 . . . . . . . . 9 (𝜑𝐴 = (𝐵 + (𝐴𝐵)))
2322adantr 481 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐴 = (𝐵 + (𝐴𝐵)))
243adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐴𝐵) ∈ ℝ)
254adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐴𝐵) ∈ ℝ*)
26 0xr 10086 . . . . . . . . . . 11 0 ∈ ℝ*
2726a1i 11 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 0 ∈ ℝ*)
28 simpr 477 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝑠 ∈ ((𝐴𝐵)(,)0))
29 ioogtlb 39717 . . . . . . . . . 10 (((𝐴𝐵) ∈ ℝ* ∧ 0 ∈ ℝ*𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐴𝐵) < 𝑠)
3025, 27, 28, 29syl3anc 1326 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐴𝐵) < 𝑠)
3124, 17, 15, 30ltadd2dd 10196 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + (𝐴𝐵)) < (𝐵 + 𝑠))
3223, 31eqbrtrd 4675 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐴 < (𝐵 + 𝑠))
33 0red 10041 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 0 ∈ ℝ)
34 iooltub 39735 . . . . . . . . . 10 (((𝐴𝐵) ∈ ℝ* ∧ 0 ∈ ℝ*𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝑠 < 0)
3525, 27, 28, 34syl3anc 1326 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝑠 < 0)
3617, 33, 15, 35ltadd2dd 10196 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + 𝑠) < (𝐵 + 0))
3719addid1d 10236 . . . . . . . . 9 (𝜑 → (𝐵 + 0) = 𝐵)
3837adantr 481 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + 0) = 𝐵)
3936, 38breqtrd 4679 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + 𝑠) < 𝐵)
4012, 14, 18, 32, 39eliood 39720 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + 𝑠) ∈ (𝐴(,)𝐵))
4110, 40ffvelrnd 6360 . . . . 5 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐹‘(𝐵 + 𝑠)) ∈ ℝ)
42 ioossre 12235 . . . . . . . . 9 (𝐴(,)𝐵) ⊆ ℝ
4342a1i 11 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
44 ax-resscn 9993 . . . . . . . 8 ℝ ⊆ ℂ
4543, 44syl6ss 3615 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
46 eqid 2622 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4746, 11, 2, 6lptioo2cn 39877 . . . . . . 7 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)))
48 fourierdlem60.y . . . . . . 7 (𝜑𝑌 ∈ (𝐹 lim 𝐵))
499, 45, 47, 48limcrecl 39861 . . . . . 6 (𝜑𝑌 ∈ ℝ)
5049adantr 481 . . . . 5 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝑌 ∈ ℝ)
5141, 50resubcld 10458 . . . 4 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝐹‘(𝐵 + 𝑠)) − 𝑌) ∈ ℝ)
52 fourierdlem60.n . . . 4 𝑁 = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))
5351, 52fmptd 6385 . . 3 (𝜑𝑁:((𝐴𝐵)(,)0)⟶ℝ)
54 fourierdlem60.d . . . 4 𝐷 = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠)
5517, 54fmptd 6385 . . 3 (𝜑𝐷:((𝐴𝐵)(,)0)⟶ℝ)
5652oveq2i 6661 . . . . . 6 (ℝ D 𝑁) = (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌)))
5756a1i 11 . . . . 5 (𝜑 → (ℝ D 𝑁) = (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))))
5857dmeqd 5326 . . . 4 (𝜑 → dom (ℝ D 𝑁) = dom (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))))
59 reelprrecn 10028 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
6059a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
6141recnd 10068 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐹‘(𝐵 + 𝑠)) ∈ ℂ)
62 dvfre 23714 . . . . . . . . . . 11 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
639, 43, 62syl2anc 693 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
64 fourierdlem60.g . . . . . . . . . . . 12 𝐺 = (ℝ D 𝐹)
6564a1i 11 . . . . . . . . . . 11 (𝜑𝐺 = (ℝ D 𝐹))
6665feq1d 6030 . . . . . . . . . 10 (𝜑 → (𝐺:dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ))
6763, 66mpbird 247 . . . . . . . . 9 (𝜑𝐺:dom (ℝ D 𝐹)⟶ℝ)
6867adantr 481 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐺:dom (ℝ D 𝐹)⟶ℝ)
6965eqcomd 2628 . . . . . . . . . . . 12 (𝜑 → (ℝ D 𝐹) = 𝐺)
7069dmeqd 5326 . . . . . . . . . . 11 (𝜑 → dom (ℝ D 𝐹) = dom 𝐺)
71 fourierdlem60.domg . . . . . . . . . . 11 (𝜑 → dom 𝐺 = (𝐴(,)𝐵))
7270, 71eqtr2d 2657 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) = dom (ℝ D 𝐹))
7372adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐴(,)𝐵) = dom (ℝ D 𝐹))
7440, 73eleqtrd 2703 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + 𝑠) ∈ dom (ℝ D 𝐹))
7568, 74ffvelrnd 6360 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐺‘(𝐵 + 𝑠)) ∈ ℝ)
76 1red 10055 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 1 ∈ ℝ)
779ffvelrnda 6359 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℝ)
7877recnd 10068 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
7972feq2d 6031 . . . . . . . . . . 11 (𝜑 → (𝐺:(𝐴(,)𝐵)⟶ℝ ↔ 𝐺:dom (ℝ D 𝐹)⟶ℝ))
8067, 79mpbird 247 . . . . . . . . . 10 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
8180ffvelrnda 6359 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) ∈ ℝ)
8219adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐵 ∈ ℂ)
8319adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 𝐵 ∈ ℂ)
84 0red 10041 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 0 ∈ ℝ)
8560, 19dvmptc 23721 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝐵)) = (𝑠 ∈ ℝ ↦ 0))
86 ioossre 12235 . . . . . . . . . . . . 13 ((𝐴𝐵)(,)0) ⊆ ℝ
8786a1i 11 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐵)(,)0) ⊆ ℝ)
8846tgioo2 22606 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
89 iooretop 22569 . . . . . . . . . . . . 13 ((𝐴𝐵)(,)0) ∈ (topGen‘ran (,))
9089a1i 11 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐵)(,)0) ∈ (topGen‘ran (,)))
9160, 83, 84, 85, 87, 88, 46, 90dvmptres 23726 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝐵)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 0))
9217recnd 10068 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝑠 ∈ ℂ)
93 recn 10026 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
9493adantl 482 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℂ)
95 1red 10055 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 1 ∈ ℝ)
9660dvmptid 23720 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑠)) = (𝑠 ∈ ℝ ↦ 1))
9760, 94, 95, 96, 87, 88, 46, 90dvmptres 23726 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1))
9860, 82, 33, 91, 92, 76, 97dvmptadd 23723 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐵 + 𝑠))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (0 + 1)))
99 0p1e1 11132 . . . . . . . . . . 11 (0 + 1) = 1
10099mpteq2i 4741 . . . . . . . . . 10 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (0 + 1)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1)
10198, 100syl6eq 2672 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐵 + 𝑠))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1))
1029feqmptd 6249 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)))
103102eqcomd 2628 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) = 𝐹)
104103oveq2d 6666 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥))) = (ℝ D 𝐹))
10580feqmptd 6249 . . . . . . . . . 10 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)))
106104, 69, 1053eqtrd 2660 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)))
107 fveq2 6191 . . . . . . . . 9 (𝑥 = (𝐵 + 𝑠) → (𝐹𝑥) = (𝐹‘(𝐵 + 𝑠)))
108 fveq2 6191 . . . . . . . . 9 (𝑥 = (𝐵 + 𝑠) → (𝐺𝑥) = (𝐺‘(𝐵 + 𝑠)))
10960, 60, 40, 76, 78, 81, 101, 106, 107, 108dvmptco 23735 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐹‘(𝐵 + 𝑠)))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐺‘(𝐵 + 𝑠)) · 1)))
11075recnd 10068 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐺‘(𝐵 + 𝑠)) ∈ ℂ)
111110mulid1d 10057 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝐺‘(𝐵 + 𝑠)) · 1) = (𝐺‘(𝐵 + 𝑠)))
112111mpteq2dva 4744 . . . . . . . 8 (𝜑 → (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐺‘(𝐵 + 𝑠)) · 1)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))))
113109, 112eqtrd 2656 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐹‘(𝐵 + 𝑠)))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))))
114 limccl 23639 . . . . . . . . 9 (𝐹 lim 𝐵) ⊆ ℂ
115114, 48sseldi 3601 . . . . . . . 8 (𝜑𝑌 ∈ ℂ)
116115adantr 481 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝑌 ∈ ℂ)
117115adantr 481 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → 𝑌 ∈ ℂ)
11860, 115dvmptc 23721 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑌)) = (𝑠 ∈ ℝ ↦ 0))
11960, 117, 84, 118, 87, 88, 46, 90dvmptres 23726 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑌)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 0))
12060, 61, 75, 113, 116, 27, 119dvmptsub 23730 . . . . . 6 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐺‘(𝐵 + 𝑠)) − 0)))
121110subid1d 10381 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝐺‘(𝐵 + 𝑠)) − 0) = (𝐺‘(𝐵 + 𝑠)))
122121mpteq2dva 4744 . . . . . 6 (𝜑 → (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐺‘(𝐵 + 𝑠)) − 0)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))))
123120, 122eqtrd 2656 . . . . 5 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))))
124123dmeqd 5326 . . . 4 (𝜑 → dom (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))) = dom (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))))
12575ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑠 ∈ ((𝐴𝐵)(,)0)(𝐺‘(𝐵 + 𝑠)) ∈ ℝ)
126 dmmptg 5632 . . . . 5 (∀𝑠 ∈ ((𝐴𝐵)(,)0)(𝐺‘(𝐵 + 𝑠)) ∈ ℝ → dom (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))) = ((𝐴𝐵)(,)0))
127125, 126syl 17 . . . 4 (𝜑 → dom (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))) = ((𝐴𝐵)(,)0))
12858, 124, 1273eqtrd 2660 . . 3 (𝜑 → dom (ℝ D 𝑁) = ((𝐴𝐵)(,)0))
12954a1i 11 . . . . . . 7 (𝜑𝐷 = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠))
130129oveq2d 6666 . . . . . 6 (𝜑 → (ℝ D 𝐷) = (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠)))
131130, 97eqtrd 2656 . . . . 5 (𝜑 → (ℝ D 𝐷) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1))
132131dmeqd 5326 . . . 4 (𝜑 → dom (ℝ D 𝐷) = dom (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1))
13376ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑠 ∈ ((𝐴𝐵)(,)0)1 ∈ ℝ)
134 dmmptg 5632 . . . . 5 (∀𝑠 ∈ ((𝐴𝐵)(,)0)1 ∈ ℝ → dom (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1) = ((𝐴𝐵)(,)0))
135133, 134syl 17 . . . 4 (𝜑 → dom (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1) = ((𝐴𝐵)(,)0))
136132, 135eqtrd 2656 . . 3 (𝜑 → dom (ℝ D 𝐷) = ((𝐴𝐵)(,)0))
137 eqid 2622 . . . . 5 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐹‘(𝐵 + 𝑠))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐹‘(𝐵 + 𝑠)))
138 eqid 2622 . . . . 5 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑌) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑌)
139 eqid 2622 . . . . 5 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))
14040adantrr 753 . . . . . 6 ((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) ≠ 𝐵)) → (𝐵 + 𝑠) ∈ (𝐴(,)𝐵))
141 eqid 2622 . . . . . . . 8 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝐵) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝐵)
142 eqid 2622 . . . . . . . 8 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠)
143 eqid 2622 . . . . . . . 8 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐵 + 𝑠)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐵 + 𝑠))
14487, 44syl6ss 3615 . . . . . . . . 9 (𝜑 → ((𝐴𝐵)(,)0) ⊆ ℂ)
1455recnd 10068 . . . . . . . . 9 (𝜑 → 0 ∈ ℂ)
146141, 144, 19, 145constlimc 39856 . . . . . . . 8 (𝜑𝐵 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝐵) lim 0))
147144, 142, 145idlimc 39858 . . . . . . . 8 (𝜑 → 0 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠) lim 0))
148141, 142, 143, 82, 92, 146, 147addlimc 39880 . . . . . . 7 (𝜑 → (𝐵 + 0) ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐵 + 𝑠)) lim 0))
14937, 148eqeltrrd 2702 . . . . . 6 (𝜑𝐵 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐵 + 𝑠)) lim 0))
150102oveq1d 6665 . . . . . . 7 (𝜑 → (𝐹 lim 𝐵) = ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) lim 𝐵))
15148, 150eleqtrd 2703 . . . . . 6 (𝜑𝑌 ∈ ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) lim 𝐵))
152 simplrr 801 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) = 𝐵)) ∧ ¬ (𝐹‘(𝐵 + 𝑠)) = 𝑌) → (𝐵 + 𝑠) = 𝐵)
15318, 39ltned 10173 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + 𝑠) ≠ 𝐵)
154153neneqd 2799 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ¬ (𝐵 + 𝑠) = 𝐵)
155154adantrr 753 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) = 𝐵)) → ¬ (𝐵 + 𝑠) = 𝐵)
156155adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) = 𝐵)) ∧ ¬ (𝐹‘(𝐵 + 𝑠)) = 𝑌) → ¬ (𝐵 + 𝑠) = 𝐵)
157152, 156condan 835 . . . . . 6 ((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) = 𝐵)) → (𝐹‘(𝐵 + 𝑠)) = 𝑌)
158140, 78, 149, 151, 107, 157limcco 23657 . . . . 5 (𝜑𝑌 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐹‘(𝐵 + 𝑠))) lim 0))
159138, 144, 115, 145constlimc 39856 . . . . 5 (𝜑𝑌 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑌) lim 0))
160137, 138, 139, 61, 116, 158, 159sublimc 39884 . . . 4 (𝜑 → (𝑌𝑌) ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌)) lim 0))
161115subidd 10380 . . . 4 (𝜑 → (𝑌𝑌) = 0)
16252eqcomi 2631 . . . . . 6 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌)) = 𝑁
163162oveq1i 6660 . . . . 5 ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌)) lim 0) = (𝑁 lim 0)
164163a1i 11 . . . 4 (𝜑 → ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌)) lim 0) = (𝑁 lim 0))
165160, 161, 1643eltr3d 2715 . . 3 (𝜑 → 0 ∈ (𝑁 lim 0))
166144, 54, 145idlimc 39858 . . 3 (𝜑 → 0 ∈ (𝐷 lim 0))
167 ubioo 12207 . . . . 5 ¬ 0 ∈ ((𝐴𝐵)(,)0)
168167a1i 11 . . . 4 (𝜑 → ¬ 0 ∈ ((𝐴𝐵)(,)0))
169 mptresid 5456 . . . . . . 7 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠) = ( I ↾ ((𝐴𝐵)(,)0))
170129, 169syl6eq 2672 . . . . . 6 (𝜑𝐷 = ( I ↾ ((𝐴𝐵)(,)0)))
171170rneqd 5353 . . . . 5 (𝜑 → ran 𝐷 = ran ( I ↾ ((𝐴𝐵)(,)0)))
172 rnresi 5479 . . . . 5 ran ( I ↾ ((𝐴𝐵)(,)0)) = ((𝐴𝐵)(,)0)
173171, 172syl6req 2673 . . . 4 (𝜑 → ((𝐴𝐵)(,)0) = ran 𝐷)
174168, 173neleqtrd 2722 . . 3 (𝜑 → ¬ 0 ∈ ran 𝐷)
175 0ne1 11088 . . . . . 6 0 ≠ 1
176175neii 2796 . . . . 5 ¬ 0 = 1
177 elsng 4191 . . . . . 6 (0 ∈ ℝ → (0 ∈ {1} ↔ 0 = 1))
1785, 177syl 17 . . . . 5 (𝜑 → (0 ∈ {1} ↔ 0 = 1))
179176, 178mtbiri 317 . . . 4 (𝜑 → ¬ 0 ∈ {1})
180131rneqd 5353 . . . . 5 (𝜑 → ran (ℝ D 𝐷) = ran (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1))
181 eqid 2622 . . . . . 6 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1)
18226a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℝ*)
183 ioon0 12201 . . . . . . . 8 (((𝐴𝐵) ∈ ℝ* ∧ 0 ∈ ℝ*) → (((𝐴𝐵)(,)0) ≠ ∅ ↔ (𝐴𝐵) < 0))
1844, 182, 183syl2anc 693 . . . . . . 7 (𝜑 → (((𝐴𝐵)(,)0) ≠ ∅ ↔ (𝐴𝐵) < 0))
1858, 184mpbird 247 . . . . . 6 (𝜑 → ((𝐴𝐵)(,)0) ≠ ∅)
186181, 76, 185rnmptc 39353 . . . . 5 (𝜑 → ran (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1) = {1})
187180, 186eqtr2d 2657 . . . 4 (𝜑 → {1} = ran (ℝ D 𝐷))
188179, 187neleqtrd 2722 . . 3 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐷))
18981recnd 10068 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) ∈ ℂ)
190 fourierdlem60.e . . . . . 6 (𝜑𝐸 ∈ (𝐺 lim 𝐵))
191105oveq1d 6665 . . . . . 6 (𝜑 → (𝐺 lim 𝐵) = ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)) lim 𝐵))
192190, 191eleqtrd 2703 . . . . 5 (𝜑𝐸 ∈ ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)) lim 𝐵))
193 simplrr 801 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) = 𝐵)) ∧ ¬ (𝐺‘(𝐵 + 𝑠)) = 𝐸) → (𝐵 + 𝑠) = 𝐵)
194155adantr 481 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) = 𝐵)) ∧ ¬ (𝐺‘(𝐵 + 𝑠)) = 𝐸) → ¬ (𝐵 + 𝑠) = 𝐵)
195193, 194condan 835 . . . . 5 ((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) = 𝐵)) → (𝐺‘(𝐵 + 𝑠)) = 𝐸)
196140, 189, 149, 192, 108, 195limcco 23657 . . . 4 (𝜑𝐸 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))) lim 0))
197110div1d 10793 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝐺‘(𝐵 + 𝑠)) / 1) = (𝐺‘(𝐵 + 𝑠)))
19856, 123syl5eq 2668 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝑁) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))))
199198adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (ℝ D 𝑁) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))))
200199fveq1d 6193 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((ℝ D 𝑁)‘𝑠) = ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠)))‘𝑠))
201 eqid 2622 . . . . . . . . . . 11 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠)))
202201fvmpt2 6291 . . . . . . . . . 10 ((𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐺‘(𝐵 + 𝑠)) ∈ ℝ) → ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠)))‘𝑠) = (𝐺‘(𝐵 + 𝑠)))
20328, 75, 202syl2anc 693 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠)))‘𝑠) = (𝐺‘(𝐵 + 𝑠)))
204200, 203eqtr2d 2657 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐺‘(𝐵 + 𝑠)) = ((ℝ D 𝑁)‘𝑠))
205131fveq1d 6193 . . . . . . . . . 10 (𝜑 → ((ℝ D 𝐷)‘𝑠) = ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1)‘𝑠))
206205adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((ℝ D 𝐷)‘𝑠) = ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1)‘𝑠))
207181fvmpt2 6291 . . . . . . . . . 10 ((𝑠 ∈ ((𝐴𝐵)(,)0) ∧ 1 ∈ ℝ) → ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1)‘𝑠) = 1)
20828, 76, 207syl2anc 693 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1)‘𝑠) = 1)
209206, 208eqtr2d 2657 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 1 = ((ℝ D 𝐷)‘𝑠))
210204, 209oveq12d 6668 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝐺‘(𝐵 + 𝑠)) / 1) = (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠)))
211197, 210eqtr3d 2658 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐺‘(𝐵 + 𝑠)) = (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠)))
212211mpteq2dva 4744 . . . . 5 (𝜑 → (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠))))
213212oveq1d 6665 . . . 4 (𝜑 → ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))) lim 0) = ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠))) lim 0))
214196, 213eleqtrd 2703 . . 3 (𝜑𝐸 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠))) lim 0))
2154, 5, 8, 53, 55, 128, 136, 165, 166, 174, 188, 214lhop2 23778 . 2 (𝜑𝐸 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝑁𝑠) / (𝐷𝑠))) lim 0))
21652fvmpt2 6291 . . . . . . 7 ((𝑠 ∈ ((𝐴𝐵)(,)0) ∧ ((𝐹‘(𝐵 + 𝑠)) − 𝑌) ∈ ℝ) → (𝑁𝑠) = ((𝐹‘(𝐵 + 𝑠)) − 𝑌))
21728, 51, 216syl2anc 693 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝑁𝑠) = ((𝐹‘(𝐵 + 𝑠)) − 𝑌))
21854fvmpt2 6291 . . . . . . 7 ((𝑠 ∈ ((𝐴𝐵)(,)0) ∧ 𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐷𝑠) = 𝑠)
21928, 28, 218syl2anc 693 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐷𝑠) = 𝑠)
220217, 219oveq12d 6668 . . . . 5 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝑁𝑠) / (𝐷𝑠)) = (((𝐹‘(𝐵 + 𝑠)) − 𝑌) / 𝑠))
221220mpteq2dva 4744 . . . 4 (𝜑 → (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝑁𝑠) / (𝐷𝑠))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (((𝐹‘(𝐵 + 𝑠)) − 𝑌) / 𝑠)))
222 fourierdlem60.h . . . 4 𝐻 = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (((𝐹‘(𝐵 + 𝑠)) − 𝑌) / 𝑠))
223221, 222syl6eqr 2674 . . 3 (𝜑 → (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝑁𝑠) / (𝐷𝑠))) = 𝐻)
224223oveq1d 6665 . 2 (𝜑 → ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝑁𝑠) / (𝐷𝑠))) lim 0) = (𝐻 lim 0))
225215, 224eleqtrd 2703 1 (𝜑𝐸 ∈ (𝐻 lim 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wss 3574  c0 3915  {csn 4177  {cpr 4179   class class class wbr 4653  cmpt 4729   I cid 5023  dom cdm 5114  ran crn 5115  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cmin 10266   / cdiv 10684  (,)cioo 12175  TopOpenctopn 16082  topGenctg 16098  fldccnfld 19746   lim climc 23626   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  fourierdlem74  40397
  Copyright terms: Public domain W3C validator