Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem61 Structured version   Visualization version   GIF version

Theorem fourierdlem61 40384
Description: Given a differentiable function 𝐹, with finite limit of the derivative at 𝐴 the derived function 𝐻 has a limit at 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem61.a (𝜑𝐴 ∈ ℝ)
fourierdlem61.b (𝜑𝐵 ∈ ℝ)
fourierdlem61.altb (𝜑𝐴 < 𝐵)
fourierdlem61.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
fourierdlem61.y (𝜑𝑌 ∈ (𝐹 lim 𝐴))
fourierdlem61.g 𝐺 = (ℝ D 𝐹)
fourierdlem61.domg (𝜑 → dom 𝐺 = (𝐴(,)𝐵))
fourierdlem61.e (𝜑𝐸 ∈ (𝐺 lim 𝐴))
fourierdlem61.h 𝐻 = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (((𝐹‘(𝐴 + 𝑠)) − 𝑌) / 𝑠))
fourierdlem61.n 𝑁 = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))
fourierdlem61.d 𝐷 = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠)
Assertion
Ref Expression
fourierdlem61 (𝜑𝐸 ∈ (𝐻 lim 0))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐷,𝑠   𝐸,𝑠   𝐹,𝑠   𝐺,𝑠   𝑁,𝑠   𝑌,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐻(𝑠)

Proof of Theorem fourierdlem61
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0red 10041 . . 3 (𝜑 → 0 ∈ ℝ)
2 fourierdlem61.b . . . . 5 (𝜑𝐵 ∈ ℝ)
3 fourierdlem61.a . . . . 5 (𝜑𝐴 ∈ ℝ)
42, 3resubcld 10458 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℝ)
54rexrd 10089 . . 3 (𝜑 → (𝐵𝐴) ∈ ℝ*)
6 fourierdlem61.altb . . . 4 (𝜑𝐴 < 𝐵)
73, 2posdifd 10614 . . . 4 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
86, 7mpbid 222 . . 3 (𝜑 → 0 < (𝐵𝐴))
9 fourierdlem61.f . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
109adantr 481 . . . . . 6 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
113rexrd 10089 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1211adantr 481 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐴 ∈ ℝ*)
132rexrd 10089 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
1413adantr 481 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐵 ∈ ℝ*)
153adantr 481 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐴 ∈ ℝ)
16 elioore 12205 . . . . . . . . 9 (𝑠 ∈ (0(,)(𝐵𝐴)) → 𝑠 ∈ ℝ)
1716adantl 482 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝑠 ∈ ℝ)
1815, 17readdcld 10069 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + 𝑠) ∈ ℝ)
193recnd 10068 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
2019addid1d 10236 . . . . . . . . . 10 (𝜑 → (𝐴 + 0) = 𝐴)
2120eqcomd 2628 . . . . . . . . 9 (𝜑𝐴 = (𝐴 + 0))
2221adantr 481 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐴 = (𝐴 + 0))
23 0red 10041 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 0 ∈ ℝ)
24 0xr 10086 . . . . . . . . . . 11 0 ∈ ℝ*
2524a1i 11 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 0 ∈ ℝ*)
265adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐵𝐴) ∈ ℝ*)
27 simpr 477 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝑠 ∈ (0(,)(𝐵𝐴)))
28 ioogtlb 39717 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (𝐵𝐴) ∈ ℝ*𝑠 ∈ (0(,)(𝐵𝐴))) → 0 < 𝑠)
2925, 26, 27, 28syl3anc 1326 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 0 < 𝑠)
3023, 17, 15, 29ltadd2dd 10196 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + 0) < (𝐴 + 𝑠))
3122, 30eqbrtrd 4675 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐴 < (𝐴 + 𝑠))
324adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐵𝐴) ∈ ℝ)
33 iooltub 39735 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (𝐵𝐴) ∈ ℝ*𝑠 ∈ (0(,)(𝐵𝐴))) → 𝑠 < (𝐵𝐴))
3425, 26, 27, 33syl3anc 1326 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝑠 < (𝐵𝐴))
3517, 32, 15, 34ltadd2dd 10196 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + 𝑠) < (𝐴 + (𝐵𝐴)))
362recnd 10068 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
3719, 36pncan3d 10395 . . . . . . . . 9 (𝜑 → (𝐴 + (𝐵𝐴)) = 𝐵)
3837adantr 481 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + (𝐵𝐴)) = 𝐵)
3935, 38breqtrd 4679 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + 𝑠) < 𝐵)
4012, 14, 18, 31, 39eliood 39720 . . . . . 6 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + 𝑠) ∈ (𝐴(,)𝐵))
4110, 40ffvelrnd 6360 . . . . 5 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐹‘(𝐴 + 𝑠)) ∈ ℝ)
42 ioossre 12235 . . . . . . . . 9 (𝐴(,)𝐵) ⊆ ℝ
4342a1i 11 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
44 ax-resscn 9993 . . . . . . . 8 ℝ ⊆ ℂ
4543, 44syl6ss 3615 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
46 eqid 2622 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4746, 13, 3, 6lptioo1cn 39878 . . . . . . 7 (𝜑𝐴 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)))
48 fourierdlem61.y . . . . . . 7 (𝜑𝑌 ∈ (𝐹 lim 𝐴))
499, 45, 47, 48limcrecl 39861 . . . . . 6 (𝜑𝑌 ∈ ℝ)
5049adantr 481 . . . . 5 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝑌 ∈ ℝ)
5141, 50resubcld 10458 . . . 4 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝐹‘(𝐴 + 𝑠)) − 𝑌) ∈ ℝ)
52 fourierdlem61.n . . . 4 𝑁 = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))
5351, 52fmptd 6385 . . 3 (𝜑𝑁:(0(,)(𝐵𝐴))⟶ℝ)
54 fourierdlem61.d . . . 4 𝐷 = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠)
5517, 54fmptd 6385 . . 3 (𝜑𝐷:(0(,)(𝐵𝐴))⟶ℝ)
5652oveq2i 6661 . . . . . 6 (ℝ D 𝑁) = (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌)))
5756a1i 11 . . . . 5 (𝜑 → (ℝ D 𝑁) = (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))))
5857dmeqd 5326 . . . 4 (𝜑 → dom (ℝ D 𝑁) = dom (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))))
59 reelprrecn 10028 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
6059a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
6141recnd 10068 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐹‘(𝐴 + 𝑠)) ∈ ℂ)
62 dvfre 23714 . . . . . . . . . . 11 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
639, 43, 62syl2anc 693 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
64 fourierdlem61.g . . . . . . . . . . . 12 𝐺 = (ℝ D 𝐹)
6564a1i 11 . . . . . . . . . . 11 (𝜑𝐺 = (ℝ D 𝐹))
6665feq1d 6030 . . . . . . . . . 10 (𝜑 → (𝐺:dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ))
6763, 66mpbird 247 . . . . . . . . 9 (𝜑𝐺:dom (ℝ D 𝐹)⟶ℝ)
6867adantr 481 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐺:dom (ℝ D 𝐹)⟶ℝ)
6965eqcomd 2628 . . . . . . . . . . . 12 (𝜑 → (ℝ D 𝐹) = 𝐺)
7069dmeqd 5326 . . . . . . . . . . 11 (𝜑 → dom (ℝ D 𝐹) = dom 𝐺)
71 fourierdlem61.domg . . . . . . . . . . 11 (𝜑 → dom 𝐺 = (𝐴(,)𝐵))
7270, 71eqtr2d 2657 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) = dom (ℝ D 𝐹))
7372adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴(,)𝐵) = dom (ℝ D 𝐹))
7440, 73eleqtrd 2703 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + 𝑠) ∈ dom (ℝ D 𝐹))
7568, 74ffvelrnd 6360 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐺‘(𝐴 + 𝑠)) ∈ ℝ)
76 1red 10055 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 1 ∈ ℝ)
779ffvelrnda 6359 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℝ)
7877recnd 10068 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
7972feq2d 6031 . . . . . . . . . . 11 (𝜑 → (𝐺:(𝐴(,)𝐵)⟶ℝ ↔ 𝐺:dom (ℝ D 𝐹)⟶ℝ))
8067, 79mpbird 247 . . . . . . . . . 10 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
8180ffvelrnda 6359 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) ∈ ℝ)
8219adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐴 ∈ ℂ)
8319adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 𝐴 ∈ ℂ)
84 0red 10041 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 0 ∈ ℝ)
8560, 19dvmptc 23721 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝐴)) = (𝑠 ∈ ℝ ↦ 0))
86 ioossre 12235 . . . . . . . . . . . . 13 (0(,)(𝐵𝐴)) ⊆ ℝ
8786a1i 11 . . . . . . . . . . . 12 (𝜑 → (0(,)(𝐵𝐴)) ⊆ ℝ)
8846tgioo2 22606 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
89 iooretop 22569 . . . . . . . . . . . . 13 (0(,)(𝐵𝐴)) ∈ (topGen‘ran (,))
9089a1i 11 . . . . . . . . . . . 12 (𝜑 → (0(,)(𝐵𝐴)) ∈ (topGen‘ran (,)))
9160, 83, 84, 85, 87, 88, 46, 90dvmptres 23726 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝐴)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 0))
9217recnd 10068 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝑠 ∈ ℂ)
93 recn 10026 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
9493adantl 482 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℂ)
95 1red 10055 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 1 ∈ ℝ)
9660dvmptid 23720 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑠)) = (𝑠 ∈ ℝ ↦ 1))
9760, 94, 95, 96, 87, 88, 46, 90dvmptres 23726 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1))
9860, 82, 23, 91, 92, 76, 97dvmptadd 23723 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐴 + 𝑠))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (0 + 1)))
99 0p1e1 11132 . . . . . . . . . . 11 (0 + 1) = 1
10099mpteq2i 4741 . . . . . . . . . 10 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (0 + 1)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1)
10198, 100syl6eq 2672 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐴 + 𝑠))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1))
1029feqmptd 6249 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)))
103102eqcomd 2628 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) = 𝐹)
104103oveq2d 6666 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥))) = (ℝ D 𝐹))
10580feqmptd 6249 . . . . . . . . . 10 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)))
106104, 69, 1053eqtrd 2660 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)))
107 fveq2 6191 . . . . . . . . 9 (𝑥 = (𝐴 + 𝑠) → (𝐹𝑥) = (𝐹‘(𝐴 + 𝑠)))
108 fveq2 6191 . . . . . . . . 9 (𝑥 = (𝐴 + 𝑠) → (𝐺𝑥) = (𝐺‘(𝐴 + 𝑠)))
10960, 60, 40, 76, 78, 81, 101, 106, 107, 108dvmptco 23735 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐹‘(𝐴 + 𝑠)))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐺‘(𝐴 + 𝑠)) · 1)))
11075recnd 10068 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐺‘(𝐴 + 𝑠)) ∈ ℂ)
111110mulid1d 10057 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝐺‘(𝐴 + 𝑠)) · 1) = (𝐺‘(𝐴 + 𝑠)))
112111mpteq2dva 4744 . . . . . . . 8 (𝜑 → (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐺‘(𝐴 + 𝑠)) · 1)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))))
113109, 112eqtrd 2656 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐹‘(𝐴 + 𝑠)))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))))
114 limccl 23639 . . . . . . . . 9 (𝐹 lim 𝐴) ⊆ ℂ
115114, 48sseldi 3601 . . . . . . . 8 (𝜑𝑌 ∈ ℂ)
116115adantr 481 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝑌 ∈ ℂ)
117115adantr 481 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → 𝑌 ∈ ℂ)
11860, 115dvmptc 23721 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑌)) = (𝑠 ∈ ℝ ↦ 0))
11960, 117, 84, 118, 87, 88, 46, 90dvmptres 23726 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑌)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 0))
12060, 61, 75, 113, 116, 25, 119dvmptsub 23730 . . . . . 6 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐺‘(𝐴 + 𝑠)) − 0)))
121110subid1d 10381 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝐺‘(𝐴 + 𝑠)) − 0) = (𝐺‘(𝐴 + 𝑠)))
122121mpteq2dva 4744 . . . . . 6 (𝜑 → (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐺‘(𝐴 + 𝑠)) − 0)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))))
123120, 122eqtrd 2656 . . . . 5 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))))
124123dmeqd 5326 . . . 4 (𝜑 → dom (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))) = dom (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))))
12575ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑠 ∈ (0(,)(𝐵𝐴))(𝐺‘(𝐴 + 𝑠)) ∈ ℝ)
126 dmmptg 5632 . . . . 5 (∀𝑠 ∈ (0(,)(𝐵𝐴))(𝐺‘(𝐴 + 𝑠)) ∈ ℝ → dom (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))) = (0(,)(𝐵𝐴)))
127125, 126syl 17 . . . 4 (𝜑 → dom (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))) = (0(,)(𝐵𝐴)))
12858, 124, 1273eqtrd 2660 . . 3 (𝜑 → dom (ℝ D 𝑁) = (0(,)(𝐵𝐴)))
12954a1i 11 . . . . . . 7 (𝜑𝐷 = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠))
130129oveq2d 6666 . . . . . 6 (𝜑 → (ℝ D 𝐷) = (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠)))
131130, 97eqtrd 2656 . . . . 5 (𝜑 → (ℝ D 𝐷) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1))
132131dmeqd 5326 . . . 4 (𝜑 → dom (ℝ D 𝐷) = dom (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1))
13376ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑠 ∈ (0(,)(𝐵𝐴))1 ∈ ℝ)
134 dmmptg 5632 . . . . 5 (∀𝑠 ∈ (0(,)(𝐵𝐴))1 ∈ ℝ → dom (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1) = (0(,)(𝐵𝐴)))
135133, 134syl 17 . . . 4 (𝜑 → dom (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1) = (0(,)(𝐵𝐴)))
136132, 135eqtrd 2656 . . 3 (𝜑 → dom (ℝ D 𝐷) = (0(,)(𝐵𝐴)))
137 eqid 2622 . . . . 5 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐹‘(𝐴 + 𝑠))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐹‘(𝐴 + 𝑠)))
138 eqid 2622 . . . . 5 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑌) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑌)
139 eqid 2622 . . . . 5 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))
14040adantrr 753 . . . . . 6 ((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) ≠ 𝐴)) → (𝐴 + 𝑠) ∈ (𝐴(,)𝐵))
141 eqid 2622 . . . . . . . 8 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝐴) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝐴)
142 eqid 2622 . . . . . . . 8 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠)
143 eqid 2622 . . . . . . . 8 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐴 + 𝑠)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐴 + 𝑠))
14487, 44syl6ss 3615 . . . . . . . . 9 (𝜑 → (0(,)(𝐵𝐴)) ⊆ ℂ)
1451recnd 10068 . . . . . . . . 9 (𝜑 → 0 ∈ ℂ)
146141, 144, 19, 145constlimc 39856 . . . . . . . 8 (𝜑𝐴 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝐴) lim 0))
147144, 142, 145idlimc 39858 . . . . . . . 8 (𝜑 → 0 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠) lim 0))
148141, 142, 143, 82, 92, 146, 147addlimc 39880 . . . . . . 7 (𝜑 → (𝐴 + 0) ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐴 + 𝑠)) lim 0))
14921, 148eqeltrd 2701 . . . . . 6 (𝜑𝐴 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐴 + 𝑠)) lim 0))
150102oveq1d 6665 . . . . . . 7 (𝜑 → (𝐹 lim 𝐴) = ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) lim 𝐴))
15148, 150eleqtrd 2703 . . . . . 6 (𝜑𝑌 ∈ ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) lim 𝐴))
152 simplrr 801 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) = 𝐴)) ∧ ¬ (𝐹‘(𝐴 + 𝑠)) = 𝑌) → (𝐴 + 𝑠) = 𝐴)
15315, 31gtned 10172 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + 𝑠) ≠ 𝐴)
154153neneqd 2799 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ¬ (𝐴 + 𝑠) = 𝐴)
155154adantrr 753 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) = 𝐴)) → ¬ (𝐴 + 𝑠) = 𝐴)
156155adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) = 𝐴)) ∧ ¬ (𝐹‘(𝐴 + 𝑠)) = 𝑌) → ¬ (𝐴 + 𝑠) = 𝐴)
157152, 156condan 835 . . . . . 6 ((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) = 𝐴)) → (𝐹‘(𝐴 + 𝑠)) = 𝑌)
158140, 78, 149, 151, 107, 157limcco 23657 . . . . 5 (𝜑𝑌 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐹‘(𝐴 + 𝑠))) lim 0))
159138, 144, 115, 145constlimc 39856 . . . . 5 (𝜑𝑌 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑌) lim 0))
160137, 138, 139, 61, 116, 158, 159sublimc 39884 . . . 4 (𝜑 → (𝑌𝑌) ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌)) lim 0))
161115subidd 10380 . . . 4 (𝜑 → (𝑌𝑌) = 0)
16252eqcomi 2631 . . . . . 6 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌)) = 𝑁
163162oveq1i 6660 . . . . 5 ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌)) lim 0) = (𝑁 lim 0)
164163a1i 11 . . . 4 (𝜑 → ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌)) lim 0) = (𝑁 lim 0))
165160, 161, 1643eltr3d 2715 . . 3 (𝜑 → 0 ∈ (𝑁 lim 0))
166144, 54, 145idlimc 39858 . . 3 (𝜑 → 0 ∈ (𝐷 lim 0))
167 lbioo 12206 . . . . 5 ¬ 0 ∈ (0(,)(𝐵𝐴))
168167a1i 11 . . . 4 (𝜑 → ¬ 0 ∈ (0(,)(𝐵𝐴)))
169 mptresid 5456 . . . . . . 7 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠) = ( I ↾ (0(,)(𝐵𝐴)))
170129, 169syl6eq 2672 . . . . . 6 (𝜑𝐷 = ( I ↾ (0(,)(𝐵𝐴))))
171170rneqd 5353 . . . . 5 (𝜑 → ran 𝐷 = ran ( I ↾ (0(,)(𝐵𝐴))))
172 rnresi 5479 . . . . 5 ran ( I ↾ (0(,)(𝐵𝐴))) = (0(,)(𝐵𝐴))
173171, 172syl6req 2673 . . . 4 (𝜑 → (0(,)(𝐵𝐴)) = ran 𝐷)
174168, 173neleqtrd 2722 . . 3 (𝜑 → ¬ 0 ∈ ran 𝐷)
175 0ne1 11088 . . . . . 6 0 ≠ 1
176175neii 2796 . . . . 5 ¬ 0 = 1
177 elsng 4191 . . . . . 6 (0 ∈ ℝ → (0 ∈ {1} ↔ 0 = 1))
1781, 177syl 17 . . . . 5 (𝜑 → (0 ∈ {1} ↔ 0 = 1))
179176, 178mtbiri 317 . . . 4 (𝜑 → ¬ 0 ∈ {1})
180131rneqd 5353 . . . . 5 (𝜑 → ran (ℝ D 𝐷) = ran (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1))
181 eqid 2622 . . . . . 6 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1)
18224a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℝ*)
183 ioon0 12201 . . . . . . . 8 ((0 ∈ ℝ* ∧ (𝐵𝐴) ∈ ℝ*) → ((0(,)(𝐵𝐴)) ≠ ∅ ↔ 0 < (𝐵𝐴)))
184182, 5, 183syl2anc 693 . . . . . . 7 (𝜑 → ((0(,)(𝐵𝐴)) ≠ ∅ ↔ 0 < (𝐵𝐴)))
1858, 184mpbird 247 . . . . . 6 (𝜑 → (0(,)(𝐵𝐴)) ≠ ∅)
186181, 76, 185rnmptc 39353 . . . . 5 (𝜑 → ran (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1) = {1})
187180, 186eqtr2d 2657 . . . 4 (𝜑 → {1} = ran (ℝ D 𝐷))
188179, 187neleqtrd 2722 . . 3 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐷))
18981recnd 10068 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) ∈ ℂ)
190 fourierdlem61.e . . . . . 6 (𝜑𝐸 ∈ (𝐺 lim 𝐴))
191105oveq1d 6665 . . . . . 6 (𝜑 → (𝐺 lim 𝐴) = ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)) lim 𝐴))
192190, 191eleqtrd 2703 . . . . 5 (𝜑𝐸 ∈ ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)) lim 𝐴))
193 simplrr 801 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) = 𝐴)) ∧ ¬ (𝐺‘(𝐴 + 𝑠)) = 𝐸) → (𝐴 + 𝑠) = 𝐴)
194155adantr 481 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) = 𝐴)) ∧ ¬ (𝐺‘(𝐴 + 𝑠)) = 𝐸) → ¬ (𝐴 + 𝑠) = 𝐴)
195193, 194condan 835 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) = 𝐴)) → (𝐺‘(𝐴 + 𝑠)) = 𝐸)
196140, 189, 149, 192, 108, 195limcco 23657 . . . 4 (𝜑𝐸 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))) lim 0))
197110div1d 10793 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝐺‘(𝐴 + 𝑠)) / 1) = (𝐺‘(𝐴 + 𝑠)))
19856, 123syl5eq 2668 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝑁) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))))
199198adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (ℝ D 𝑁) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))))
200199fveq1d 6193 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((ℝ D 𝑁)‘𝑠) = ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠)))‘𝑠))
201 eqid 2622 . . . . . . . . . . 11 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠)))
202201fvmpt2 6291 . . . . . . . . . 10 ((𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐺‘(𝐴 + 𝑠)) ∈ ℝ) → ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠)))‘𝑠) = (𝐺‘(𝐴 + 𝑠)))
20327, 75, 202syl2anc 693 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠)))‘𝑠) = (𝐺‘(𝐴 + 𝑠)))
204200, 203eqtr2d 2657 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐺‘(𝐴 + 𝑠)) = ((ℝ D 𝑁)‘𝑠))
205131fveq1d 6193 . . . . . . . . . 10 (𝜑 → ((ℝ D 𝐷)‘𝑠) = ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1)‘𝑠))
206205adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((ℝ D 𝐷)‘𝑠) = ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1)‘𝑠))
207181fvmpt2 6291 . . . . . . . . . 10 ((𝑠 ∈ (0(,)(𝐵𝐴)) ∧ 1 ∈ ℝ) → ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1)‘𝑠) = 1)
20827, 76, 207syl2anc 693 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1)‘𝑠) = 1)
209206, 208eqtr2d 2657 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 1 = ((ℝ D 𝐷)‘𝑠))
210204, 209oveq12d 6668 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝐺‘(𝐴 + 𝑠)) / 1) = (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠)))
211197, 210eqtr3d 2658 . . . . . 6 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐺‘(𝐴 + 𝑠)) = (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠)))
212211mpteq2dva 4744 . . . . 5 (𝜑 → (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠))))
213212oveq1d 6665 . . . 4 (𝜑 → ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))) lim 0) = ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠))) lim 0))
214196, 213eleqtrd 2703 . . 3 (𝜑𝐸 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠))) lim 0))
2151, 5, 8, 53, 55, 128, 136, 165, 166, 174, 188, 214lhop1 23777 . 2 (𝜑𝐸 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝑁𝑠) / (𝐷𝑠))) lim 0))
21652fvmpt2 6291 . . . . . . 7 ((𝑠 ∈ (0(,)(𝐵𝐴)) ∧ ((𝐹‘(𝐴 + 𝑠)) − 𝑌) ∈ ℝ) → (𝑁𝑠) = ((𝐹‘(𝐴 + 𝑠)) − 𝑌))
21727, 51, 216syl2anc 693 . . . . . 6 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝑁𝑠) = ((𝐹‘(𝐴 + 𝑠)) − 𝑌))
21854fvmpt2 6291 . . . . . . 7 ((𝑠 ∈ (0(,)(𝐵𝐴)) ∧ 𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐷𝑠) = 𝑠)
21927, 27, 218syl2anc 693 . . . . . 6 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐷𝑠) = 𝑠)
220217, 219oveq12d 6668 . . . . 5 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝑁𝑠) / (𝐷𝑠)) = (((𝐹‘(𝐴 + 𝑠)) − 𝑌) / 𝑠))
221220mpteq2dva 4744 . . . 4 (𝜑 → (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝑁𝑠) / (𝐷𝑠))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (((𝐹‘(𝐴 + 𝑠)) − 𝑌) / 𝑠)))
222 fourierdlem61.h . . . 4 𝐻 = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (((𝐹‘(𝐴 + 𝑠)) − 𝑌) / 𝑠))
223221, 222syl6eqr 2674 . . 3 (𝜑 → (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝑁𝑠) / (𝐷𝑠))) = 𝐻)
224223oveq1d 6665 . 2 (𝜑 → ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝑁𝑠) / (𝐷𝑠))) lim 0) = (𝐻 lim 0))
225215, 224eleqtrd 2703 1 (𝜑𝐸 ∈ (𝐻 lim 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wss 3574  c0 3915  {csn 4177  {cpr 4179   class class class wbr 4653  cmpt 4729   I cid 5023  dom cdm 5114  ran crn 5115  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cmin 10266   / cdiv 10684  (,)cioo 12175  TopOpenctopn 16082  topGenctg 16098  fldccnfld 19746   lim climc 23626   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  fourierdlem75  40398
  Copyright terms: Public domain W3C validator