Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem53 Structured version   Visualization version   GIF version

Theorem fourierdlem53 40376
Description: The limit of 𝐹(𝑠) at (𝑋 + 𝐷) is the limit of 𝐹(𝑋 + 𝑠) at 𝐷. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem53.1 (𝜑𝐹:ℝ⟶ℝ)
fourierdlem53.2 (𝜑𝑋 ∈ ℝ)
fourierdlem53.3 (𝜑𝐴 ⊆ ℝ)
fourierdlem53.g 𝐺 = (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠)))
fourierdlem53.xps ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ 𝐵)
fourierdlem53.b (𝜑𝐵 ⊆ ℝ)
fourierdlem53.sned ((𝜑𝑠𝐴) → 𝑠𝐷)
fourierdlem53.c (𝜑𝐶 ∈ ((𝐹𝐵) lim (𝑋 + 𝐷)))
fourierdlem53.d (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
fourierdlem53 (𝜑𝐶 ∈ (𝐺 lim 𝐷))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐷,𝑠   𝐹,𝑠   𝑋,𝑠   𝜑,𝑠
Allowed substitution hints:   𝐶(𝑠)   𝐺(𝑠)

Proof of Theorem fourierdlem53
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem53.xps . . . . . . 7 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ 𝐵)
2 fourierdlem53.1 . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℝ)
3 fourierdlem53.b . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℝ)
42, 3fssresd 6071 . . . . . . . . . 10 (𝜑 → (𝐹𝐵):𝐵⟶ℝ)
5 fdm 6051 . . . . . . . . . 10 ((𝐹𝐵):𝐵⟶ℝ → dom (𝐹𝐵) = 𝐵)
64, 5syl 17 . . . . . . . . 9 (𝜑 → dom (𝐹𝐵) = 𝐵)
76eqcomd 2628 . . . . . . . 8 (𝜑𝐵 = dom (𝐹𝐵))
87adantr 481 . . . . . . 7 ((𝜑𝑠𝐴) → 𝐵 = dom (𝐹𝐵))
91, 8eleqtrd 2703 . . . . . 6 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ dom (𝐹𝐵))
10 fourierdlem53.2 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℝ)
1110recnd 10068 . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
1211adantr 481 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑋 ∈ ℂ)
13 fourierdlem53.3 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
1413sselda 3603 . . . . . . . . . 10 ((𝜑𝑠𝐴) → 𝑠 ∈ ℝ)
1514recnd 10068 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑠 ∈ ℂ)
16 fourierdlem53.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℂ)
1716adantr 481 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝐷 ∈ ℂ)
18 fourierdlem53.sned . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑠𝐷)
1912, 15, 17, 18addneintrd 10243 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ≠ (𝑋 + 𝐷))
2019neneqd 2799 . . . . . . 7 ((𝜑𝑠𝐴) → ¬ (𝑋 + 𝑠) = (𝑋 + 𝐷))
2110adantr 481 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑋 ∈ ℝ)
2221, 14readdcld 10069 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ ℝ)
23 elsng 4191 . . . . . . . 8 ((𝑋 + 𝑠) ∈ ℝ → ((𝑋 + 𝑠) ∈ {(𝑋 + 𝐷)} ↔ (𝑋 + 𝑠) = (𝑋 + 𝐷)))
2422, 23syl 17 . . . . . . 7 ((𝜑𝑠𝐴) → ((𝑋 + 𝑠) ∈ {(𝑋 + 𝐷)} ↔ (𝑋 + 𝑠) = (𝑋 + 𝐷)))
2520, 24mtbird 315 . . . . . 6 ((𝜑𝑠𝐴) → ¬ (𝑋 + 𝑠) ∈ {(𝑋 + 𝐷)})
269, 25eldifd 3585 . . . . 5 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
2726ralrimiva 2966 . . . 4 (𝜑 → ∀𝑠𝐴 (𝑋 + 𝑠) ∈ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
28 eqid 2622 . . . . 5 (𝑠𝐴 ↦ (𝑋 + 𝑠)) = (𝑠𝐴 ↦ (𝑋 + 𝑠))
2928rnmptss 6392 . . . 4 (∀𝑠𝐴 (𝑋 + 𝑠) ∈ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}) → ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
3027, 29syl 17 . . 3 (𝜑 → ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
31 eqid 2622 . . . 4 (𝑠𝐴𝑋) = (𝑠𝐴𝑋)
32 eqid 2622 . . . 4 (𝑠𝐴𝑠) = (𝑠𝐴𝑠)
33 ax-resscn 9993 . . . . . 6 ℝ ⊆ ℂ
3413, 33syl6ss 3615 . . . . 5 (𝜑𝐴 ⊆ ℂ)
3531, 34, 11, 16constlimc 39856 . . . 4 (𝜑𝑋 ∈ ((𝑠𝐴𝑋) lim 𝐷))
3634, 32, 16idlimc 39858 . . . 4 (𝜑𝐷 ∈ ((𝑠𝐴𝑠) lim 𝐷))
3731, 32, 28, 12, 15, 35, 36addlimc 39880 . . 3 (𝜑 → (𝑋 + 𝐷) ∈ ((𝑠𝐴 ↦ (𝑋 + 𝑠)) lim 𝐷))
38 fourierdlem53.c . . 3 (𝜑𝐶 ∈ ((𝐹𝐵) lim (𝑋 + 𝐷)))
3930, 37, 38limccog 39852 . 2 (𝜑𝐶 ∈ (((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) lim 𝐷))
40 simpr 477 . . . . . . . . 9 ((𝜑𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))) → 𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠)))
4128elrnmpt 5372 . . . . . . . . . 10 (𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) → (𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ↔ ∃𝑠𝐴 𝑦 = (𝑋 + 𝑠)))
4241adantl 482 . . . . . . . . 9 ((𝜑𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))) → (𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ↔ ∃𝑠𝐴 𝑦 = (𝑋 + 𝑠)))
4340, 42mpbid 222 . . . . . . . 8 ((𝜑𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))) → ∃𝑠𝐴 𝑦 = (𝑋 + 𝑠))
44 nfv 1843 . . . . . . . . . 10 𝑠𝜑
45 nfmpt1 4747 . . . . . . . . . . . 12 𝑠(𝑠𝐴 ↦ (𝑋 + 𝑠))
4645nfrn 5368 . . . . . . . . . . 11 𝑠ran (𝑠𝐴 ↦ (𝑋 + 𝑠))
4746nfcri 2758 . . . . . . . . . 10 𝑠 𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))
4844, 47nfan 1828 . . . . . . . . 9 𝑠(𝜑𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠)))
49 nfv 1843 . . . . . . . . 9 𝑠 𝑦𝐵
50 simp3 1063 . . . . . . . . . . . 12 ((𝜑𝑠𝐴𝑦 = (𝑋 + 𝑠)) → 𝑦 = (𝑋 + 𝑠))
5113adant3 1081 . . . . . . . . . . . 12 ((𝜑𝑠𝐴𝑦 = (𝑋 + 𝑠)) → (𝑋 + 𝑠) ∈ 𝐵)
5250, 51eqeltrd 2701 . . . . . . . . . . 11 ((𝜑𝑠𝐴𝑦 = (𝑋 + 𝑠)) → 𝑦𝐵)
53523exp 1264 . . . . . . . . . 10 (𝜑 → (𝑠𝐴 → (𝑦 = (𝑋 + 𝑠) → 𝑦𝐵)))
5453adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))) → (𝑠𝐴 → (𝑦 = (𝑋 + 𝑠) → 𝑦𝐵)))
5548, 49, 54rexlimd 3026 . . . . . . . 8 ((𝜑𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))) → (∃𝑠𝐴 𝑦 = (𝑋 + 𝑠) → 𝑦𝐵))
5643, 55mpd 15 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))) → 𝑦𝐵)
5756ralrimiva 2966 . . . . . 6 (𝜑 → ∀𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))𝑦𝐵)
58 dfss3 3592 . . . . . 6 (ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ 𝐵 ↔ ∀𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))𝑦𝐵)
5957, 58sylibr 224 . . . . 5 (𝜑 → ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ 𝐵)
60 cores 5638 . . . . 5 (ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ 𝐵 → ((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))))
6159, 60syl 17 . . . 4 (𝜑 → ((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))))
6222, 28fmptd 6385 . . . . 5 (𝜑 → (𝑠𝐴 ↦ (𝑋 + 𝑠)):𝐴⟶ℝ)
63 fcompt 6400 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ (𝑠𝐴 ↦ (𝑋 + 𝑠)):𝐴⟶ℝ) → (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))))
642, 62, 63syl2anc 693 . . . 4 (𝜑 → (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))))
65 fourierdlem53.g . . . . . 6 𝐺 = (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠)))
6665a1i 11 . . . . 5 (𝜑𝐺 = (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠))))
67 oveq2 6658 . . . . . . . 8 (𝑠 = 𝑥 → (𝑋 + 𝑠) = (𝑋 + 𝑥))
6867fveq2d 6195 . . . . . . 7 (𝑠 = 𝑥 → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑥)))
6968cbvmptv 4750 . . . . . 6 (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘(𝑋 + 𝑥)))
7069a1i 11 . . . . 5 (𝜑 → (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘(𝑋 + 𝑥))))
71 eqidd 2623 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑠𝐴 ↦ (𝑋 + 𝑠)) = (𝑠𝐴 ↦ (𝑋 + 𝑠)))
7267adantl 482 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑠 = 𝑥) → (𝑋 + 𝑠) = (𝑋 + 𝑥))
73 simpr 477 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
7410adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑋 ∈ ℝ)
7513sselda 3603 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
7674, 75readdcld 10069 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑋 + 𝑥) ∈ ℝ)
7771, 72, 73, 76fvmptd 6288 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥) = (𝑋 + 𝑥))
7877eqcomd 2628 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑋 + 𝑥) = ((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))
7978fveq2d 6195 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹‘(𝑋 + 𝑥)) = (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥)))
8079mpteq2dva 4744 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (𝐹‘(𝑋 + 𝑥))) = (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))))
8166, 70, 803eqtrrd 2661 . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))) = 𝐺)
8261, 64, 813eqtrd 2660 . . 3 (𝜑 → ((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = 𝐺)
8382oveq1d 6665 . 2 (𝜑 → (((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) lim 𝐷) = (𝐺 lim 𝐷))
8439, 83eleqtrd 2703 1 (𝜑𝐶 ∈ (𝐺 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  cdif 3571  wss 3574  {csn 4177  cmpt 4729  dom cdm 5114  ran crn 5115  cres 5116  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935   + caddc 9939   lim climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cnp 21032  df-xms 22125  df-ms 22126  df-limc 23630
This theorem is referenced by:  fourierdlem74  40397  fourierdlem75  40398  fourierdlem76  40399  fourierdlem84  40407
  Copyright terms: Public domain W3C validator