| Step | Hyp | Ref
| Expression |
| 1 | | itg10a.1 |
. . 3
⊢ (𝜑 → 𝐹 ∈ dom
∫1) |
| 2 | | itg1val 23450 |
. . 3
⊢ (𝐹 ∈ dom ∫1
→ (∫1‘𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(◡𝐹 “ {𝑘})))) |
| 3 | 1, 2 | syl 17 |
. 2
⊢ (𝜑 →
(∫1‘𝐹)
= Σ𝑘 ∈ (ran
𝐹 ∖ {0})(𝑘 · (vol‘(◡𝐹 “ {𝑘})))) |
| 4 | | i1ff 23443 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ dom ∫1
→ 𝐹:ℝ⟶ℝ) |
| 5 | 1, 4 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 6 | | ffn 6045 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:ℝ⟶ℝ →
𝐹 Fn
ℝ) |
| 7 | 5, 6 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 Fn ℝ) |
| 8 | 7 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝐹 Fn ℝ) |
| 9 | | fniniseg 6338 |
. . . . . . . . . . . . 13
⊢ (𝐹 Fn ℝ → (𝑥 ∈ (◡𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘))) |
| 10 | 8, 9 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑥 ∈ (◡𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘))) |
| 11 | | eldifsni 4320 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (ran 𝐹 ∖ {0}) → 𝑘 ≠ 0) |
| 12 | 11 | ad2antlr 763 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → 𝑘 ≠ 0) |
| 13 | | simprl 794 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → 𝑥 ∈ ℝ) |
| 14 | | eldif 3584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (ℝ ∖ 𝐴) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝐴)) |
| 15 | | simplrr 801 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) = 𝑘) |
| 16 | | simpll 790 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → 𝜑) |
| 17 | | itg10a.4 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) = 0) |
| 18 | 16, 17 | sylan 488 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) = 0) |
| 19 | 15, 18 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → 𝑘 = 0) |
| 20 | 19 | ex 450 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑘 = 0)) |
| 21 | 14, 20 | syl5bir 233 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝐴) → 𝑘 = 0)) |
| 22 | 13, 21 | mpand 711 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (¬ 𝑥 ∈ 𝐴 → 𝑘 = 0)) |
| 23 | 22 | necon1ad 2811 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (𝑘 ≠ 0 → 𝑥 ∈ 𝐴)) |
| 24 | 12, 23 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → 𝑥 ∈ 𝐴) |
| 25 | 24 | ex 450 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → ((𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘) → 𝑥 ∈ 𝐴)) |
| 26 | 10, 25 | sylbid 230 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑥 ∈ (◡𝐹 “ {𝑘}) → 𝑥 ∈ 𝐴)) |
| 27 | 26 | ssrdv 3609 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑘}) ⊆ 𝐴) |
| 28 | | itg10a.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 29 | 28 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝐴 ⊆ ℝ) |
| 30 | 27, 29 | sstrd 3613 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑘}) ⊆ ℝ) |
| 31 | | itg10a.3 |
. . . . . . . . . . 11
⊢ (𝜑 → (vol*‘𝐴) = 0) |
| 32 | 31 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol*‘𝐴) = 0) |
| 33 | | ovolssnul 23255 |
. . . . . . . . . 10
⊢ (((◡𝐹 “ {𝑘}) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(◡𝐹 “ {𝑘})) = 0) |
| 34 | 27, 29, 32, 33 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol*‘(◡𝐹 “ {𝑘})) = 0) |
| 35 | | nulmbl 23303 |
. . . . . . . . 9
⊢ (((◡𝐹 “ {𝑘}) ⊆ ℝ ∧ (vol*‘(◡𝐹 “ {𝑘})) = 0) → (◡𝐹 “ {𝑘}) ∈ dom vol) |
| 36 | 30, 34, 35 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑘}) ∈ dom vol) |
| 37 | | mblvol 23298 |
. . . . . . . 8
⊢ ((◡𝐹 “ {𝑘}) ∈ dom vol → (vol‘(◡𝐹 “ {𝑘})) = (vol*‘(◡𝐹 “ {𝑘}))) |
| 38 | 36, 37 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑘})) = (vol*‘(◡𝐹 “ {𝑘}))) |
| 39 | 38, 34 | eqtrd 2656 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑘})) = 0) |
| 40 | 39 | oveq2d 6666 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(◡𝐹 “ {𝑘}))) = (𝑘 · 0)) |
| 41 | | frn 6053 |
. . . . . . . . . 10
⊢ (𝐹:ℝ⟶ℝ →
ran 𝐹 ⊆
ℝ) |
| 42 | 5, 41 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
| 43 | 42 | ssdifssd 3748 |
. . . . . . . 8
⊢ (𝜑 → (ran 𝐹 ∖ {0}) ⊆
ℝ) |
| 44 | 43 | sselda 3603 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℝ) |
| 45 | 44 | recnd 10068 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℂ) |
| 46 | 45 | mul01d 10235 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · 0) = 0) |
| 47 | 40, 46 | eqtrd 2656 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(◡𝐹 “ {𝑘}))) = 0) |
| 48 | 47 | sumeq2dv 14433 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(◡𝐹 “ {𝑘}))) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})0) |
| 49 | | i1frn 23444 |
. . . . . . 7
⊢ (𝐹 ∈ dom ∫1
→ ran 𝐹 ∈
Fin) |
| 50 | 1, 49 | syl 17 |
. . . . . 6
⊢ (𝜑 → ran 𝐹 ∈ Fin) |
| 51 | | difss 3737 |
. . . . . 6
⊢ (ran
𝐹 ∖ {0}) ⊆ ran
𝐹 |
| 52 | | ssfi 8180 |
. . . . . 6
⊢ ((ran
𝐹 ∈ Fin ∧ (ran
𝐹 ∖ {0}) ⊆ ran
𝐹) → (ran 𝐹 ∖ {0}) ∈
Fin) |
| 53 | 50, 51, 52 | sylancl 694 |
. . . . 5
⊢ (𝜑 → (ran 𝐹 ∖ {0}) ∈ Fin) |
| 54 | 53 | olcd 408 |
. . . 4
⊢ (𝜑 → ((ran 𝐹 ∖ {0}) ⊆
(ℤ≥‘0) ∨ (ran 𝐹 ∖ {0}) ∈ Fin)) |
| 55 | | sumz 14453 |
. . . 4
⊢ (((ran
𝐹 ∖ {0}) ⊆
(ℤ≥‘0) ∨ (ran 𝐹 ∖ {0}) ∈ Fin) →
Σ𝑘 ∈ (ran 𝐹 ∖ {0})0 =
0) |
| 56 | 54, 55 | syl 17 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ (ran 𝐹 ∖ {0})0 = 0) |
| 57 | 48, 56 | eqtrd 2656 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(◡𝐹 “ {𝑘}))) = 0) |
| 58 | 3, 57 | eqtrd 2656 |
1
⊢ (𝜑 →
(∫1‘𝐹)
= 0) |