| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg10a | Structured version Visualization version Unicode version | ||
| Description: The integral of a simple function supported on a nullset is zero. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| Ref | Expression |
|---|---|
| itg10a.1 |
|
| itg10a.2 |
|
| itg10a.3 |
|
| itg10a.4 |
|
| Ref | Expression |
|---|---|
| itg10a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg10a.1 |
. . 3
| |
| 2 | itg1val 23450 |
. . 3
| |
| 3 | 1, 2 | syl 17 |
. 2
|
| 4 | i1ff 23443 |
. . . . . . . . . . . . . . . 16
| |
| 5 | 1, 4 | syl 17 |
. . . . . . . . . . . . . . 15
|
| 6 | ffn 6045 |
. . . . . . . . . . . . . . 15
| |
| 7 | 5, 6 | syl 17 |
. . . . . . . . . . . . . 14
|
| 8 | 7 | adantr 481 |
. . . . . . . . . . . . 13
|
| 9 | fniniseg 6338 |
. . . . . . . . . . . . 13
| |
| 10 | 8, 9 | syl 17 |
. . . . . . . . . . . 12
|
| 11 | eldifsni 4320 |
. . . . . . . . . . . . . . 15
| |
| 12 | 11 | ad2antlr 763 |
. . . . . . . . . . . . . 14
|
| 13 | simprl 794 |
. . . . . . . . . . . . . . . 16
| |
| 14 | eldif 3584 |
. . . . . . . . . . . . . . . . 17
| |
| 15 | simplrr 801 |
. . . . . . . . . . . . . . . . . . 19
| |
| 16 | simpll 790 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 17 | itg10a.4 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 18 | 16, 17 | sylan 488 |
. . . . . . . . . . . . . . . . . . 19
|
| 19 | 15, 18 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . 18
|
| 20 | 19 | ex 450 |
. . . . . . . . . . . . . . . . 17
|
| 21 | 14, 20 | syl5bir 233 |
. . . . . . . . . . . . . . . 16
|
| 22 | 13, 21 | mpand 711 |
. . . . . . . . . . . . . . 15
|
| 23 | 22 | necon1ad 2811 |
. . . . . . . . . . . . . 14
|
| 24 | 12, 23 | mpd 15 |
. . . . . . . . . . . . 13
|
| 25 | 24 | ex 450 |
. . . . . . . . . . . 12
|
| 26 | 10, 25 | sylbid 230 |
. . . . . . . . . . 11
|
| 27 | 26 | ssrdv 3609 |
. . . . . . . . . 10
|
| 28 | itg10a.2 |
. . . . . . . . . . 11
| |
| 29 | 28 | adantr 481 |
. . . . . . . . . 10
|
| 30 | 27, 29 | sstrd 3613 |
. . . . . . . . 9
|
| 31 | itg10a.3 |
. . . . . . . . . . 11
| |
| 32 | 31 | adantr 481 |
. . . . . . . . . 10
|
| 33 | ovolssnul 23255 |
. . . . . . . . . 10
| |
| 34 | 27, 29, 32, 33 | syl3anc 1326 |
. . . . . . . . 9
|
| 35 | nulmbl 23303 |
. . . . . . . . 9
| |
| 36 | 30, 34, 35 | syl2anc 693 |
. . . . . . . 8
|
| 37 | mblvol 23298 |
. . . . . . . 8
| |
| 38 | 36, 37 | syl 17 |
. . . . . . 7
|
| 39 | 38, 34 | eqtrd 2656 |
. . . . . 6
|
| 40 | 39 | oveq2d 6666 |
. . . . 5
|
| 41 | frn 6053 |
. . . . . . . . . 10
| |
| 42 | 5, 41 | syl 17 |
. . . . . . . . 9
|
| 43 | 42 | ssdifssd 3748 |
. . . . . . . 8
|
| 44 | 43 | sselda 3603 |
. . . . . . 7
|
| 45 | 44 | recnd 10068 |
. . . . . 6
|
| 46 | 45 | mul01d 10235 |
. . . . 5
|
| 47 | 40, 46 | eqtrd 2656 |
. . . 4
|
| 48 | 47 | sumeq2dv 14433 |
. . 3
|
| 49 | i1frn 23444 |
. . . . . . 7
| |
| 50 | 1, 49 | syl 17 |
. . . . . 6
|
| 51 | difss 3737 |
. . . . . 6
| |
| 52 | ssfi 8180 |
. . . . . 6
| |
| 53 | 50, 51, 52 | sylancl 694 |
. . . . 5
|
| 54 | 53 | olcd 408 |
. . . 4
|
| 55 | sumz 14453 |
. . . 4
| |
| 56 | 54, 55 | syl 17 |
. . 3
|
| 57 | 48, 56 | eqtrd 2656 |
. 2
|
| 58 | 3, 57 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-ioo 12179 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-sum 14417 df-ovol 23233 df-vol 23234 df-itg1 23389 |
| This theorem is referenced by: itg2addnclem 33461 |
| Copyright terms: Public domain | W3C validator |