| Step | Hyp | Ref
| Expression |
| 1 | | itg10a.1 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ dom
∫1) |
| 2 | | i1frn 23444 |
. . . . 5
⊢ (𝐹 ∈ dom ∫1
→ ran 𝐹 ∈
Fin) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → ran 𝐹 ∈ Fin) |
| 4 | | difss 3737 |
. . . 4
⊢ (ran
𝐹 ∖ {0}) ⊆ ran
𝐹 |
| 5 | | ssfi 8180 |
. . . 4
⊢ ((ran
𝐹 ∈ Fin ∧ (ran
𝐹 ∖ {0}) ⊆ ran
𝐹) → (ran 𝐹 ∖ {0}) ∈
Fin) |
| 6 | 3, 4, 5 | sylancl 694 |
. . 3
⊢ (𝜑 → (ran 𝐹 ∖ {0}) ∈ Fin) |
| 7 | | i1ff 23443 |
. . . . . . . 8
⊢ (𝐹 ∈ dom ∫1
→ 𝐹:ℝ⟶ℝ) |
| 8 | 1, 7 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 9 | | frn 6053 |
. . . . . . 7
⊢ (𝐹:ℝ⟶ℝ →
ran 𝐹 ⊆
ℝ) |
| 10 | 8, 9 | syl 17 |
. . . . . 6
⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
| 11 | 10 | ssdifssd 3748 |
. . . . 5
⊢ (𝜑 → (ran 𝐹 ∖ {0}) ⊆
ℝ) |
| 12 | 11 | sselda 3603 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℝ) |
| 13 | | i1fima2sn 23447 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) →
(vol‘(◡𝐹 “ {𝑘})) ∈ ℝ) |
| 14 | 1, 13 | sylan 488 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑘})) ∈ ℝ) |
| 15 | 12, 14 | remulcld 10070 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(◡𝐹 “ {𝑘}))) ∈ ℝ) |
| 16 | | 0le0 11110 |
. . . . 5
⊢ 0 ≤
0 |
| 17 | | i1fima 23445 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ dom ∫1
→ (◡𝐹 “ {𝑘}) ∈ dom vol) |
| 18 | 1, 17 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝐹 “ {𝑘}) ∈ dom vol) |
| 19 | | mblvol 23298 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ {𝑘}) ∈ dom vol → (vol‘(◡𝐹 “ {𝑘})) = (vol*‘(◡𝐹 “ {𝑘}))) |
| 20 | 18, 19 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (vol‘(◡𝐹 “ {𝑘})) = (vol*‘(◡𝐹 “ {𝑘}))) |
| 21 | 20 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol‘(◡𝐹 “ {𝑘})) = (vol*‘(◡𝐹 “ {𝑘}))) |
| 22 | | ffn 6045 |
. . . . . . . . . . . . . 14
⊢ (𝐹:ℝ⟶ℝ →
𝐹 Fn
ℝ) |
| 23 | 8, 22 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 Fn ℝ) |
| 24 | | fniniseg 6338 |
. . . . . . . . . . . . 13
⊢ (𝐹 Fn ℝ → (𝑥 ∈ (◡𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘))) |
| 25 | 23, 24 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ (◡𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘))) |
| 26 | 25 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑥 ∈ (◡𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘))) |
| 27 | | simprl 794 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → 𝑥 ∈ ℝ) |
| 28 | | eldif 3584 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (ℝ ∖ 𝐴) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝐴)) |
| 29 | | itg1ge0a.4 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ (𝐹‘𝑥)) |
| 30 | 29 | ex 450 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑥 ∈ (ℝ ∖ 𝐴) → 0 ≤ (𝐹‘𝑥))) |
| 31 | 30 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (𝑥 ∈ (ℝ ∖ 𝐴) → 0 ≤ (𝐹‘𝑥))) |
| 32 | | simprr 796 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (𝐹‘𝑥) = 𝑘) |
| 33 | 32 | breq2d 4665 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (0 ≤ (𝐹‘𝑥) ↔ 0 ≤ 𝑘)) |
| 34 | | 0red 10041 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → 0 ∈ ℝ) |
| 35 | 12 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → 𝑘 ∈ ℝ) |
| 36 | 34, 35 | lenltd 10183 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (0 ≤ 𝑘 ↔ ¬ 𝑘 < 0)) |
| 37 | 33, 36 | bitrd 268 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (0 ≤ (𝐹‘𝑥) ↔ ¬ 𝑘 < 0)) |
| 38 | 31, 37 | sylibd 229 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑘 < 0)) |
| 39 | 28, 38 | syl5bir 233 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝐴) → ¬ 𝑘 < 0)) |
| 40 | 27, 39 | mpand 711 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (¬ 𝑥 ∈ 𝐴 → ¬ 𝑘 < 0)) |
| 41 | 40 | con4d 114 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (𝑘 < 0 → 𝑥 ∈ 𝐴)) |
| 42 | 41 | impancom 456 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → ((𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘) → 𝑥 ∈ 𝐴)) |
| 43 | 26, 42 | sylbid 230 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑥 ∈ (◡𝐹 “ {𝑘}) → 𝑥 ∈ 𝐴)) |
| 44 | 43 | ssrdv 3609 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (◡𝐹 “ {𝑘}) ⊆ 𝐴) |
| 45 | | itg10a.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 46 | 45 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → 𝐴 ⊆ ℝ) |
| 47 | | itg10a.3 |
. . . . . . . . . 10
⊢ (𝜑 → (vol*‘𝐴) = 0) |
| 48 | 47 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol*‘𝐴) = 0) |
| 49 | | ovolssnul 23255 |
. . . . . . . . 9
⊢ (((◡𝐹 “ {𝑘}) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(◡𝐹 “ {𝑘})) = 0) |
| 50 | 44, 46, 48, 49 | syl3anc 1326 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol*‘(◡𝐹 “ {𝑘})) = 0) |
| 51 | 21, 50 | eqtrd 2656 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol‘(◡𝐹 “ {𝑘})) = 0) |
| 52 | 51 | oveq2d 6666 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑘 · (vol‘(◡𝐹 “ {𝑘}))) = (𝑘 · 0)) |
| 53 | 12 | recnd 10068 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℂ) |
| 54 | 53 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → 𝑘 ∈ ℂ) |
| 55 | 54 | mul01d 10235 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑘 · 0) = 0) |
| 56 | 52, 55 | eqtrd 2656 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑘 · (vol‘(◡𝐹 “ {𝑘}))) = 0) |
| 57 | 16, 56 | syl5breqr 4691 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → 0 ≤ (𝑘 · (vol‘(◡𝐹 “ {𝑘})))) |
| 58 | 12 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 𝑘 ∈ ℝ) |
| 59 | 14 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (vol‘(◡𝐹 “ {𝑘})) ∈ ℝ) |
| 60 | | simpr 477 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤ 𝑘) |
| 61 | 18 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (◡𝐹 “ {𝑘}) ∈ dom vol) |
| 62 | | mblss 23299 |
. . . . . . . 8
⊢ ((◡𝐹 “ {𝑘}) ∈ dom vol → (◡𝐹 “ {𝑘}) ⊆ ℝ) |
| 63 | 61, 62 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (◡𝐹 “ {𝑘}) ⊆ ℝ) |
| 64 | | ovolge0 23249 |
. . . . . . 7
⊢ ((◡𝐹 “ {𝑘}) ⊆ ℝ → 0 ≤
(vol*‘(◡𝐹 “ {𝑘}))) |
| 65 | 63, 64 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤
(vol*‘(◡𝐹 “ {𝑘}))) |
| 66 | 20 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (vol‘(◡𝐹 “ {𝑘})) = (vol*‘(◡𝐹 “ {𝑘}))) |
| 67 | 65, 66 | breqtrrd 4681 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤
(vol‘(◡𝐹 “ {𝑘}))) |
| 68 | 58, 59, 60, 67 | mulge0d 10604 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤ (𝑘 · (vol‘(◡𝐹 “ {𝑘})))) |
| 69 | | 0red 10041 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 0 ∈
ℝ) |
| 70 | 57, 68, 12, 69 | ltlecasei 10145 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 0 ≤ (𝑘 · (vol‘(◡𝐹 “ {𝑘})))) |
| 71 | 6, 15, 70 | fsumge0 14527 |
. 2
⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(◡𝐹 “ {𝑘})))) |
| 72 | | itg1val 23450 |
. . 3
⊢ (𝐹 ∈ dom ∫1
→ (∫1‘𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(◡𝐹 “ {𝑘})))) |
| 73 | 1, 72 | syl 17 |
. 2
⊢ (𝜑 →
(∫1‘𝐹)
= Σ𝑘 ∈ (ran
𝐹 ∖ {0})(𝑘 · (vol‘(◡𝐹 “ {𝑘})))) |
| 74 | 71, 73 | breqtrrd 4681 |
1
⊢ (𝜑 → 0 ≤
(∫1‘𝐹)) |