MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1ge0a Structured version   Visualization version   GIF version

Theorem itg1ge0a 23478
Description: The integral of an almost positive simple function is positive. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg10a.1 (𝜑𝐹 ∈ dom ∫1)
itg10a.2 (𝜑𝐴 ⊆ ℝ)
itg10a.3 (𝜑 → (vol*‘𝐴) = 0)
itg1ge0a.4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ (𝐹𝑥))
Assertion
Ref Expression
itg1ge0a (𝜑 → 0 ≤ (∫1𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥

Proof of Theorem itg1ge0a
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itg10a.1 . . . . 5 (𝜑𝐹 ∈ dom ∫1)
2 i1frn 23444 . . . . 5 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
31, 2syl 17 . . . 4 (𝜑 → ran 𝐹 ∈ Fin)
4 difss 3737 . . . 4 (ran 𝐹 ∖ {0}) ⊆ ran 𝐹
5 ssfi 8180 . . . 4 ((ran 𝐹 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin)
63, 4, 5sylancl 694 . . 3 (𝜑 → (ran 𝐹 ∖ {0}) ∈ Fin)
7 i1ff 23443 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
81, 7syl 17 . . . . . . 7 (𝜑𝐹:ℝ⟶ℝ)
9 frn 6053 . . . . . . 7 (𝐹:ℝ⟶ℝ → ran 𝐹 ⊆ ℝ)
108, 9syl 17 . . . . . 6 (𝜑 → ran 𝐹 ⊆ ℝ)
1110ssdifssd 3748 . . . . 5 (𝜑 → (ran 𝐹 ∖ {0}) ⊆ ℝ)
1211sselda 3603 . . . 4 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℝ)
13 i1fima2sn 23447 . . . . 5 ((𝐹 ∈ dom ∫1𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) ∈ ℝ)
141, 13sylan 488 . . . 4 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) ∈ ℝ)
1512, 14remulcld 10070 . . 3 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) ∈ ℝ)
16 0le0 11110 . . . . 5 0 ≤ 0
17 i1fima 23445 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (𝐹 “ {𝑘}) ∈ dom vol)
181, 17syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 “ {𝑘}) ∈ dom vol)
19 mblvol 23298 . . . . . . . . . 10 ((𝐹 “ {𝑘}) ∈ dom vol → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
2018, 19syl 17 . . . . . . . . 9 (𝜑 → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
2120ad2antrr 762 . . . . . . . 8 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
22 ffn 6045 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
238, 22syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 Fn ℝ)
24 fniniseg 6338 . . . . . . . . . . . . 13 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
2523, 24syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
2625ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
27 simprl 794 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑥 ∈ ℝ)
28 eldif 3584 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℝ ∖ 𝐴) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴))
29 itg1ge0a.4 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ (𝐹𝑥))
3029ex 450 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (ℝ ∖ 𝐴) → 0 ≤ (𝐹𝑥)))
3130ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝑥 ∈ (ℝ ∖ 𝐴) → 0 ≤ (𝐹𝑥)))
32 simprr 796 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝐹𝑥) = 𝑘)
3332breq2d 4665 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (0 ≤ (𝐹𝑥) ↔ 0 ≤ 𝑘))
34 0red 10041 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 0 ∈ ℝ)
3512adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑘 ∈ ℝ)
3634, 35lenltd 10183 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (0 ≤ 𝑘 ↔ ¬ 𝑘 < 0))
3733, 36bitrd 268 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (0 ≤ (𝐹𝑥) ↔ ¬ 𝑘 < 0))
3831, 37sylibd 229 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑘 < 0))
3928, 38syl5bir 233 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴) → ¬ 𝑘 < 0))
4027, 39mpand 711 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (¬ 𝑥𝐴 → ¬ 𝑘 < 0))
4140con4d 114 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝑘 < 0 → 𝑥𝐴))
4241impancom 456 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → ((𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘) → 𝑥𝐴))
4326, 42sylbid 230 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑥 ∈ (𝐹 “ {𝑘}) → 𝑥𝐴))
4443ssrdv 3609 . . . . . . . . 9 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝐹 “ {𝑘}) ⊆ 𝐴)
45 itg10a.2 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ)
4645ad2antrr 762 . . . . . . . . 9 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → 𝐴 ⊆ ℝ)
47 itg10a.3 . . . . . . . . . 10 (𝜑 → (vol*‘𝐴) = 0)
4847ad2antrr 762 . . . . . . . . 9 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol*‘𝐴) = 0)
49 ovolssnul 23255 . . . . . . . . 9 (((𝐹 “ {𝑘}) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(𝐹 “ {𝑘})) = 0)
5044, 46, 48, 49syl3anc 1326 . . . . . . . 8 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol*‘(𝐹 “ {𝑘})) = 0)
5121, 50eqtrd 2656 . . . . . . 7 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol‘(𝐹 “ {𝑘})) = 0)
5251oveq2d 6666 . . . . . 6 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) = (𝑘 · 0))
5312recnd 10068 . . . . . . . 8 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℂ)
5453adantr 481 . . . . . . 7 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → 𝑘 ∈ ℂ)
5554mul01d 10235 . . . . . 6 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑘 · 0) = 0)
5652, 55eqtrd 2656 . . . . 5 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) = 0)
5716, 56syl5breqr 4691 . . . 4 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → 0 ≤ (𝑘 · (vol‘(𝐹 “ {𝑘}))))
5812adantr 481 . . . . 5 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 𝑘 ∈ ℝ)
5914adantr 481 . . . . 5 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (vol‘(𝐹 “ {𝑘})) ∈ ℝ)
60 simpr 477 . . . . 5 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤ 𝑘)
6118ad2antrr 762 . . . . . . . 8 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (𝐹 “ {𝑘}) ∈ dom vol)
62 mblss 23299 . . . . . . . 8 ((𝐹 “ {𝑘}) ∈ dom vol → (𝐹 “ {𝑘}) ⊆ ℝ)
6361, 62syl 17 . . . . . . 7 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (𝐹 “ {𝑘}) ⊆ ℝ)
64 ovolge0 23249 . . . . . . 7 ((𝐹 “ {𝑘}) ⊆ ℝ → 0 ≤ (vol*‘(𝐹 “ {𝑘})))
6563, 64syl 17 . . . . . 6 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤ (vol*‘(𝐹 “ {𝑘})))
6620ad2antrr 762 . . . . . 6 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
6765, 66breqtrrd 4681 . . . . 5 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤ (vol‘(𝐹 “ {𝑘})))
6858, 59, 60, 67mulge0d 10604 . . . 4 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤ (𝑘 · (vol‘(𝐹 “ {𝑘}))))
69 0red 10041 . . . 4 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 0 ∈ ℝ)
7057, 68, 12, 69ltlecasei 10145 . . 3 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 0 ≤ (𝑘 · (vol‘(𝐹 “ {𝑘}))))
716, 15, 70fsumge0 14527 . 2 (𝜑 → 0 ≤ Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
72 itg1val 23450 . . 3 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
731, 72syl 17 . 2 (𝜑 → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
7471, 73breqtrrd 4681 1 (𝜑 → 0 ≤ (∫1𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  cdif 3571  wss 3574  {csn 4177   class class class wbr 4653  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936   · cmul 9941   < clt 10074  cle 10075  Σcsu 14416  vol*covol 23231  volcvol 23232  1citg1 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389
This theorem is referenced by:  itg1lea  23479
  Copyright terms: Public domain W3C validator