| Step | Hyp | Ref
| Expression |
| 1 | | i1fadd.1 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ dom
∫1) |
| 2 | | i1frn 23444 |
. . . 4
⊢ (𝐹 ∈ dom ∫1
→ ran 𝐹 ∈
Fin) |
| 3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → ran 𝐹 ∈ Fin) |
| 4 | | i1fadd.2 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ dom
∫1) |
| 5 | | i1frn 23444 |
. . . . . 6
⊢ (𝐺 ∈ dom ∫1
→ ran 𝐺 ∈
Fin) |
| 6 | 4, 5 | syl 17 |
. . . . 5
⊢ (𝜑 → ran 𝐺 ∈ Fin) |
| 7 | 6 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → ran 𝐺 ∈ Fin) |
| 8 | | i1ff 23443 |
. . . . . . . . . 10
⊢ (𝐹 ∈ dom ∫1
→ 𝐹:ℝ⟶ℝ) |
| 9 | 1, 8 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 10 | | frn 6053 |
. . . . . . . . 9
⊢ (𝐹:ℝ⟶ℝ →
ran 𝐹 ⊆
ℝ) |
| 11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
| 12 | 11 | sselda 3603 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ℝ) |
| 13 | 12 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℝ) |
| 14 | 13 | recnd 10068 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℂ) |
| 15 | | itg1add.3 |
. . . . . . . . 9
⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) |
| 16 | 1, 4, 15 | itg1addlem2 23464 |
. . . . . . . 8
⊢ (𝜑 → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
| 17 | 16 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
| 18 | | i1ff 23443 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ dom ∫1
→ 𝐺:ℝ⟶ℝ) |
| 19 | 4, 18 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺:ℝ⟶ℝ) |
| 20 | | frn 6053 |
. . . . . . . . . 10
⊢ (𝐺:ℝ⟶ℝ →
ran 𝐺 ⊆
ℝ) |
| 21 | 19, 20 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝐺 ⊆ ℝ) |
| 22 | 21 | sselda 3603 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ) |
| 23 | 22 | adantlr 751 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ) |
| 24 | 17, 13, 23 | fovrnd 6806 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℝ) |
| 25 | 24 | recnd 10068 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℂ) |
| 26 | 14, 25 | mulcld 10060 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → (𝑦 · (𝑦𝐼𝑧)) ∈ ℂ) |
| 27 | 7, 26 | fsumcl 14464 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) ∈ ℂ) |
| 28 | 23 | recnd 10068 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℂ) |
| 29 | 28, 25 | mulcld 10060 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → (𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
| 30 | 7, 29 | fsumcl 14464 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
| 31 | 3, 27, 30 | fsumadd 14470 |
. 2
⊢ (𝜑 → Σ𝑦 ∈ ran 𝐹(Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧))) = (Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
| 32 | | itg1add.4 |
. . . 4
⊢ 𝑃 = ( + ↾ (ran 𝐹 × ran 𝐺)) |
| 33 | 1, 4, 15, 32 | itg1addlem4 23466 |
. . 3
⊢ (𝜑 →
(∫1‘(𝐹
∘𝑓 + 𝐺)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧))) |
| 34 | 14, 28, 25 | adddird 10065 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = ((𝑦 · (𝑦𝐼𝑧)) + (𝑧 · (𝑦𝐼𝑧)))) |
| 35 | 34 | sumeq2dv 14433 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺((𝑦 · (𝑦𝐼𝑧)) + (𝑧 · (𝑦𝐼𝑧)))) |
| 36 | 7, 26, 29 | fsumadd 14470 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → Σ𝑧 ∈ ran 𝐺((𝑦 · (𝑦𝐼𝑧)) + (𝑧 · (𝑦𝐼𝑧))) = (Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
| 37 | 35, 36 | eqtrd 2656 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = (Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
| 38 | 37 | sumeq2dv 14433 |
. . 3
⊢ (𝜑 → Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹(Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
| 39 | 33, 38 | eqtrd 2656 |
. 2
⊢ (𝜑 →
(∫1‘(𝐹
∘𝑓 + 𝐺)) = Σ𝑦 ∈ ran 𝐹(Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
| 40 | | itg1val 23450 |
. . . . 5
⊢ (𝐹 ∈ dom ∫1
→ (∫1‘𝐹) = Σ𝑦 ∈ (ran 𝐹 ∖ {0})(𝑦 · (vol‘(◡𝐹 “ {𝑦})))) |
| 41 | 1, 40 | syl 17 |
. . . 4
⊢ (𝜑 →
(∫1‘𝐹)
= Σ𝑦 ∈ (ran
𝐹 ∖ {0})(𝑦 · (vol‘(◡𝐹 “ {𝑦})))) |
| 42 | 19 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝐺:ℝ⟶ℝ) |
| 43 | 6 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → ran 𝐺 ∈ Fin) |
| 44 | | inss2 3834 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐺 “ {𝑧}) |
| 45 | 44 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐺 “ {𝑧})) |
| 46 | | i1fima 23445 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ dom ∫1
→ (◡𝐹 “ {𝑦}) ∈ dom vol) |
| 47 | 1, 46 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹 “ {𝑦}) ∈ dom vol) |
| 48 | 47 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (◡𝐹 “ {𝑦}) ∈ dom vol) |
| 49 | | i1fima 23445 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ dom ∫1
→ (◡𝐺 “ {𝑧}) ∈ dom vol) |
| 50 | 4, 49 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐺 “ {𝑧}) ∈ dom vol) |
| 51 | 50 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (◡𝐺 “ {𝑧}) ∈ dom vol) |
| 52 | | inmbl 23310 |
. . . . . . . . . 10
⊢ (((◡𝐹 “ {𝑦}) ∈ dom vol ∧ (◡𝐺 “ {𝑧}) ∈ dom vol) → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
| 53 | 48, 51, 52 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
| 54 | 11 | ssdifssd 3748 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ran 𝐹 ∖ {0}) ⊆
ℝ) |
| 55 | 54 | sselda 3603 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝑦 ∈ ℝ) |
| 56 | 55 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℝ) |
| 57 | 21 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → ran 𝐺 ⊆ ℝ) |
| 58 | 57 | sselda 3603 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ) |
| 59 | | eldifsni 4320 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (ran 𝐹 ∖ {0}) → 𝑦 ≠ 0) |
| 60 | 59 | ad2antlr 763 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ≠ 0) |
| 61 | | simpl 473 |
. . . . . . . . . . . . 13
⊢ ((𝑦 = 0 ∧ 𝑧 = 0) → 𝑦 = 0) |
| 62 | 61 | necon3ai 2819 |
. . . . . . . . . . . 12
⊢ (𝑦 ≠ 0 → ¬ (𝑦 = 0 ∧ 𝑧 = 0)) |
| 63 | 60, 62 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ¬ (𝑦 = 0 ∧ 𝑧 = 0)) |
| 64 | 1, 4, 15 | itg1addlem3 23465 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ¬
(𝑦 = 0 ∧ 𝑧 = 0)) → (𝑦𝐼𝑧) = (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
| 65 | 56, 58, 63, 64 | syl21anc 1325 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) = (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
| 66 | 16 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
| 67 | 66, 56, 58 | fovrnd 6806 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℝ) |
| 68 | 65, 67 | eqeltrrd 2702 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
| 69 | 42, 43, 45, 53, 68 | itg1addlem1 23459 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) = Σ𝑧 ∈ ran 𝐺(vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
| 70 | | iunin2 4584 |
. . . . . . . . . 10
⊢ ∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) = ((◡𝐹 “ {𝑦}) ∩ ∪
𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧})) |
| 71 | 1 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝐹 ∈ dom
∫1) |
| 72 | 71, 46 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) ∈ dom vol) |
| 73 | | mblss 23299 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹 “ {𝑦}) ∈ dom vol → (◡𝐹 “ {𝑦}) ⊆ ℝ) |
| 74 | 72, 73 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) ⊆ ℝ) |
| 75 | | iunid 4575 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑧 ∈ ran 𝐺{𝑧} = ran 𝐺 |
| 76 | 75 | imaeq2i 5464 |
. . . . . . . . . . . . . 14
⊢ (◡𝐺 “ ∪
𝑧 ∈ ran 𝐺{𝑧}) = (◡𝐺 “ ran 𝐺) |
| 77 | | imaiun 6503 |
. . . . . . . . . . . . . 14
⊢ (◡𝐺 “ ∪
𝑧 ∈ ran 𝐺{𝑧}) = ∪
𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧}) |
| 78 | | cnvimarndm 5486 |
. . . . . . . . . . . . . 14
⊢ (◡𝐺 “ ran 𝐺) = dom 𝐺 |
| 79 | 76, 77, 78 | 3eqtr3i 2652 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧}) = dom 𝐺 |
| 80 | | fdm 6051 |
. . . . . . . . . . . . . 14
⊢ (𝐺:ℝ⟶ℝ →
dom 𝐺 =
ℝ) |
| 81 | 42, 80 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → dom 𝐺 = ℝ) |
| 82 | 79, 81 | syl5eq 2668 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → ∪ 𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧}) = ℝ) |
| 83 | 74, 82 | sseqtr4d 3642 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) ⊆ ∪ 𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧})) |
| 84 | | df-ss 3588 |
. . . . . . . . . . 11
⊢ ((◡𝐹 “ {𝑦}) ⊆ ∪ 𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧}) ↔ ((◡𝐹 “ {𝑦}) ∩ ∪
𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧})) = (◡𝐹 “ {𝑦})) |
| 85 | 83, 84 | sylib 208 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → ((◡𝐹 “ {𝑦}) ∩ ∪
𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧})) = (◡𝐹 “ {𝑦})) |
| 86 | 70, 85 | syl5req 2669 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) = ∪
𝑧 ∈ ran 𝐺((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) |
| 87 | 86 | fveq2d 6195 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑦})) = (vol‘∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
| 88 | 65 | sumeq2dv 14433 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → Σ𝑧 ∈ ran 𝐺(𝑦𝐼𝑧) = Σ𝑧 ∈ ran 𝐺(vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
| 89 | 69, 87, 88 | 3eqtr4d 2666 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑦})) = Σ𝑧 ∈ ran 𝐺(𝑦𝐼𝑧)) |
| 90 | 89 | oveq2d 6666 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (𝑦 · (vol‘(◡𝐹 “ {𝑦}))) = (𝑦 · Σ𝑧 ∈ ran 𝐺(𝑦𝐼𝑧))) |
| 91 | 55 | recnd 10068 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝑦 ∈ ℂ) |
| 92 | 67 | recnd 10068 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℂ) |
| 93 | 43, 91, 92 | fsummulc2 14516 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (𝑦 · Σ𝑧 ∈ ran 𝐺(𝑦𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧))) |
| 94 | 90, 93 | eqtrd 2656 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (𝑦 · (vol‘(◡𝐹 “ {𝑦}))) = Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧))) |
| 95 | 94 | sumeq2dv 14433 |
. . . 4
⊢ (𝜑 → Σ𝑦 ∈ (ran 𝐹 ∖ {0})(𝑦 · (vol‘(◡𝐹 “ {𝑦}))) = Σ𝑦 ∈ (ran 𝐹 ∖ {0})Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧))) |
| 96 | | difssd 3738 |
. . . . 5
⊢ (𝜑 → (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) |
| 97 | 56 | recnd 10068 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℂ) |
| 98 | 97, 92 | mulcld 10060 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑦 · (𝑦𝐼𝑧)) ∈ ℂ) |
| 99 | 43, 98 | fsumcl 14464 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) ∈ ℂ) |
| 100 | | dfin4 3867 |
. . . . . . . 8
⊢ (ran
𝐹 ∩ {0}) = (ran 𝐹 ∖ (ran 𝐹 ∖ {0})) |
| 101 | | inss2 3834 |
. . . . . . . 8
⊢ (ran
𝐹 ∩ {0}) ⊆
{0} |
| 102 | 100, 101 | eqsstr3i 3636 |
. . . . . . 7
⊢ (ran
𝐹 ∖ (ran 𝐹 ∖ {0})) ⊆
{0} |
| 103 | 102 | sseli 3599 |
. . . . . 6
⊢ (𝑦 ∈ (ran 𝐹 ∖ (ran 𝐹 ∖ {0})) → 𝑦 ∈ {0}) |
| 104 | | elsni 4194 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ {0} → 𝑦 = 0) |
| 105 | 104 | ad2antlr 763 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 = 0) |
| 106 | 105 | oveq1d 6665 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → (𝑦 · (𝑦𝐼𝑧)) = (0 · (𝑦𝐼𝑧))) |
| 107 | 16 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
| 108 | | 0re 10040 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ |
| 109 | 105, 108 | syl6eqel 2709 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℝ) |
| 110 | 22 | adantlr 751 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ) |
| 111 | 107, 109,
110 | fovrnd 6806 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℝ) |
| 112 | 111 | recnd 10068 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℂ) |
| 113 | 112 | mul02d 10234 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → (0 · (𝑦𝐼𝑧)) = 0) |
| 114 | 106, 113 | eqtrd 2656 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → (𝑦 · (𝑦𝐼𝑧)) = 0) |
| 115 | 114 | sumeq2dv 14433 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ {0}) → Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺0) |
| 116 | 6 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ {0}) → ran 𝐺 ∈ Fin) |
| 117 | 116 | olcd 408 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ {0}) → (ran 𝐺 ⊆ (ℤ≥‘0)
∨ ran 𝐺 ∈
Fin)) |
| 118 | | sumz 14453 |
. . . . . . . 8
⊢ ((ran
𝐺 ⊆
(ℤ≥‘0) ∨ ran 𝐺 ∈ Fin) → Σ𝑧 ∈ ran 𝐺0 = 0) |
| 119 | 117, 118 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ {0}) → Σ𝑧 ∈ ran 𝐺0 = 0) |
| 120 | 115, 119 | eqtrd 2656 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ {0}) → Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) = 0) |
| 121 | 103, 120 | sylan2 491 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ (ran 𝐹 ∖ {0}))) → Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) = 0) |
| 122 | 96, 99, 121, 3 | fsumss 14456 |
. . . 4
⊢ (𝜑 → Σ𝑦 ∈ (ran 𝐹 ∖ {0})Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧))) |
| 123 | 41, 95, 122 | 3eqtrd 2660 |
. . 3
⊢ (𝜑 →
(∫1‘𝐹)
= Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧))) |
| 124 | | itg1val 23450 |
. . . . 5
⊢ (𝐺 ∈ dom ∫1
→ (∫1‘𝐺) = Σ𝑧 ∈ (ran 𝐺 ∖ {0})(𝑧 · (vol‘(◡𝐺 “ {𝑧})))) |
| 125 | 4, 124 | syl 17 |
. . . 4
⊢ (𝜑 →
(∫1‘𝐺)
= Σ𝑧 ∈ (ran
𝐺 ∖ {0})(𝑧 · (vol‘(◡𝐺 “ {𝑧})))) |
| 126 | 9 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → 𝐹:ℝ⟶ℝ) |
| 127 | 3 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ran 𝐹 ∈ Fin) |
| 128 | | inss1 3833 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐹 “ {𝑦}) |
| 129 | 128 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐹 “ {𝑦})) |
| 130 | 47 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (◡𝐹 “ {𝑦}) ∈ dom vol) |
| 131 | 50 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (◡𝐺 “ {𝑧}) ∈ dom vol) |
| 132 | 130, 131,
52 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
| 133 | 11 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ran 𝐹 ⊆ ℝ) |
| 134 | 133 | sselda 3603 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ℝ) |
| 135 | 21 | ssdifssd 3748 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ran 𝐺 ∖ {0}) ⊆
ℝ) |
| 136 | 135 | sselda 3603 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → 𝑧 ∈ ℝ) |
| 137 | 136 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℝ) |
| 138 | | eldifsni 4320 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (ran 𝐺 ∖ {0}) → 𝑧 ≠ 0) |
| 139 | 138 | ad2antlr 763 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ≠ 0) |
| 140 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((𝑦 = 0 ∧ 𝑧 = 0) → 𝑧 = 0) |
| 141 | 140 | necon3ai 2819 |
. . . . . . . . . . . 12
⊢ (𝑧 ≠ 0 → ¬ (𝑦 = 0 ∧ 𝑧 = 0)) |
| 142 | 139, 141 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → ¬ (𝑦 = 0 ∧ 𝑧 = 0)) |
| 143 | 134, 137,
142, 64 | syl21anc 1325 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) = (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
| 144 | 16 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
| 145 | 144, 134,
137 | fovrnd 6806 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℝ) |
| 146 | 143, 145 | eqeltrrd 2702 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
| 147 | 126, 127,
129, 132, 146 | itg1addlem1 23459 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘∪ 𝑦 ∈ ran 𝐹((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) = Σ𝑦 ∈ ran 𝐹(vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
| 148 | | incom 3805 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) = ((◡𝐺 “ {𝑧}) ∩ (◡𝐹 “ {𝑦})) |
| 149 | 148 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ran 𝐹 → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) = ((◡𝐺 “ {𝑧}) ∩ (◡𝐹 “ {𝑦}))) |
| 150 | 149 | iuneq2i 4539 |
. . . . . . . . . . 11
⊢ ∪ 𝑦 ∈ ran 𝐹((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) = ∪
𝑦 ∈ ran 𝐹((◡𝐺 “ {𝑧}) ∩ (◡𝐹 “ {𝑦})) |
| 151 | | iunin2 4584 |
. . . . . . . . . . 11
⊢ ∪ 𝑦 ∈ ran 𝐹((◡𝐺 “ {𝑧}) ∩ (◡𝐹 “ {𝑦})) = ((◡𝐺 “ {𝑧}) ∩ ∪
𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦})) |
| 152 | 150, 151 | eqtri 2644 |
. . . . . . . . . 10
⊢ ∪ 𝑦 ∈ ran 𝐹((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) = ((◡𝐺 “ {𝑧}) ∩ ∪
𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦})) |
| 153 | | cnvimass 5485 |
. . . . . . . . . . . . 13
⊢ (◡𝐺 “ {𝑧}) ⊆ dom 𝐺 |
| 154 | 19, 80 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐺 = ℝ) |
| 155 | 154 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → dom 𝐺 = ℝ) |
| 156 | 153, 155 | syl5sseq 3653 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (◡𝐺 “ {𝑧}) ⊆ ℝ) |
| 157 | | iunid 4575 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑦 ∈ ran 𝐹{𝑦} = ran 𝐹 |
| 158 | 157 | imaeq2i 5464 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹 “ ∪
𝑦 ∈ ran 𝐹{𝑦}) = (◡𝐹 “ ran 𝐹) |
| 159 | | imaiun 6503 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹 “ ∪
𝑦 ∈ ran 𝐹{𝑦}) = ∪
𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦}) |
| 160 | | cnvimarndm 5486 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 |
| 161 | 158, 159,
160 | 3eqtr3i 2652 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦}) = dom 𝐹 |
| 162 | | fdm 6051 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:ℝ⟶ℝ →
dom 𝐹 =
ℝ) |
| 163 | 9, 162 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐹 = ℝ) |
| 164 | 163 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → dom 𝐹 = ℝ) |
| 165 | 161, 164 | syl5eq 2668 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ∪ 𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦}) = ℝ) |
| 166 | 156, 165 | sseqtr4d 3642 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (◡𝐺 “ {𝑧}) ⊆ ∪ 𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦})) |
| 167 | | df-ss 3588 |
. . . . . . . . . . 11
⊢ ((◡𝐺 “ {𝑧}) ⊆ ∪ 𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦}) ↔ ((◡𝐺 “ {𝑧}) ∩ ∪
𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦})) = (◡𝐺 “ {𝑧})) |
| 168 | 166, 167 | sylib 208 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ((◡𝐺 “ {𝑧}) ∩ ∪
𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦})) = (◡𝐺 “ {𝑧})) |
| 169 | 152, 168 | syl5req 2669 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (◡𝐺 “ {𝑧}) = ∪
𝑦 ∈ ran 𝐹((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) |
| 170 | 169 | fveq2d 6195 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(◡𝐺 “ {𝑧})) = (vol‘∪ 𝑦 ∈ ran 𝐹((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
| 171 | 143 | sumeq2dv 14433 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → Σ𝑦 ∈ ran 𝐹(𝑦𝐼𝑧) = Σ𝑦 ∈ ran 𝐹(vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
| 172 | 147, 170,
171 | 3eqtr4d 2666 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(◡𝐺 “ {𝑧})) = Σ𝑦 ∈ ran 𝐹(𝑦𝐼𝑧)) |
| 173 | 172 | oveq2d 6666 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝑧 · (vol‘(◡𝐺 “ {𝑧}))) = (𝑧 · Σ𝑦 ∈ ran 𝐹(𝑦𝐼𝑧))) |
| 174 | 136 | recnd 10068 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → 𝑧 ∈ ℂ) |
| 175 | 145 | recnd 10068 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℂ) |
| 176 | 127, 174,
175 | fsummulc2 14516 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝑧 · Σ𝑦 ∈ ran 𝐹(𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧))) |
| 177 | 173, 176 | eqtrd 2656 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝑧 · (vol‘(◡𝐺 “ {𝑧}))) = Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧))) |
| 178 | 177 | sumeq2dv 14433 |
. . . 4
⊢ (𝜑 → Σ𝑧 ∈ (ran 𝐺 ∖ {0})(𝑧 · (vol‘(◡𝐺 “ {𝑧}))) = Σ𝑧 ∈ (ran 𝐺 ∖ {0})Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧))) |
| 179 | | difssd 3738 |
. . . . . 6
⊢ (𝜑 → (ran 𝐺 ∖ {0}) ⊆ ran 𝐺) |
| 180 | 174 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℂ) |
| 181 | 180, 175 | mulcld 10060 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
| 182 | 127, 181 | fsumcl 14464 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
| 183 | | dfin4 3867 |
. . . . . . . . 9
⊢ (ran
𝐺 ∩ {0}) = (ran 𝐺 ∖ (ran 𝐺 ∖ {0})) |
| 184 | | inss2 3834 |
. . . . . . . . 9
⊢ (ran
𝐺 ∩ {0}) ⊆
{0} |
| 185 | 183, 184 | eqsstr3i 3636 |
. . . . . . . 8
⊢ (ran
𝐺 ∖ (ran 𝐺 ∖ {0})) ⊆
{0} |
| 186 | 185 | sseli 3599 |
. . . . . . 7
⊢ (𝑧 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {0})) → 𝑧 ∈ {0}) |
| 187 | | elsni 4194 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ {0} → 𝑧 = 0) |
| 188 | 187 | ad2antlr 763 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 = 0) |
| 189 | 188 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → (𝑧 · (𝑦𝐼𝑧)) = (0 · (𝑦𝐼𝑧))) |
| 190 | 16 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
| 191 | 12 | adantlr 751 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ℝ) |
| 192 | 188, 108 | syl6eqel 2709 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℝ) |
| 193 | 190, 191,
192 | fovrnd 6806 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℝ) |
| 194 | 193 | recnd 10068 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℂ) |
| 195 | 194 | mul02d 10234 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → (0 · (𝑦𝐼𝑧)) = 0) |
| 196 | 189, 195 | eqtrd 2656 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → (𝑧 · (𝑦𝐼𝑧)) = 0) |
| 197 | 196 | sumeq2dv 14433 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {0}) → Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹0) |
| 198 | 3 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ {0}) → ran 𝐹 ∈ Fin) |
| 199 | 198 | olcd 408 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {0}) → (ran 𝐹 ⊆ (ℤ≥‘0)
∨ ran 𝐹 ∈
Fin)) |
| 200 | | sumz 14453 |
. . . . . . . . 9
⊢ ((ran
𝐹 ⊆
(ℤ≥‘0) ∨ ran 𝐹 ∈ Fin) → Σ𝑦 ∈ ran 𝐹0 = 0) |
| 201 | 199, 200 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {0}) → Σ𝑦 ∈ ran 𝐹0 = 0) |
| 202 | 197, 201 | eqtrd 2656 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {0}) → Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = 0) |
| 203 | 186, 202 | sylan2 491 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {0}))) → Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = 0) |
| 204 | 179, 182,
203, 6 | fsumss 14456 |
. . . . 5
⊢ (𝜑 → Σ𝑧 ∈ (ran 𝐺 ∖ {0})Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧))) |
| 205 | 22 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℝ) |
| 206 | 205 | recnd 10068 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℂ) |
| 207 | 16 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
| 208 | 11 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → ran 𝐹 ⊆ ℝ) |
| 209 | 208 | sselda 3603 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ℝ) |
| 210 | 207, 209,
205 | fovrnd 6806 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℝ) |
| 211 | 210 | recnd 10068 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℂ) |
| 212 | 206, 211 | mulcld 10060 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → (𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
| 213 | 212 | anasss 679 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐹)) → (𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
| 214 | 6, 3, 213 | fsumcom 14507 |
. . . . 5
⊢ (𝜑 → Σ𝑧 ∈ ran 𝐺Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧))) |
| 215 | 204, 214 | eqtrd 2656 |
. . . 4
⊢ (𝜑 → Σ𝑧 ∈ (ran 𝐺 ∖ {0})Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧))) |
| 216 | 125, 178,
215 | 3eqtrd 2660 |
. . 3
⊢ (𝜑 →
(∫1‘𝐺)
= Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧))) |
| 217 | 123, 216 | oveq12d 6668 |
. 2
⊢ (𝜑 →
((∫1‘𝐹) + (∫1‘𝐺)) = (Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
| 218 | 31, 39, 217 | 3eqtr4d 2666 |
1
⊢ (𝜑 →
(∫1‘(𝐹
∘𝑓 + 𝐺)) = ((∫1‘𝐹) +
(∫1‘𝐺))) |