| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1843 |
. . . . 5
⊢
Ⅎ𝑘 𝐴 ∈ dom vol |
| 2 | | nfcsb1v 3549 |
. . . . . 6
⊢
Ⅎ𝑛⦋𝑘 / 𝑛⦌𝐴 |
| 3 | 2 | nfel1 2779 |
. . . . 5
⊢
Ⅎ𝑛⦋𝑘 / 𝑛⦌𝐴 ∈ dom vol |
| 4 | | csbeq1a 3542 |
. . . . . 6
⊢ (𝑛 = 𝑘 → 𝐴 = ⦋𝑘 / 𝑛⦌𝐴) |
| 5 | 4 | eleq1d 2686 |
. . . . 5
⊢ (𝑛 = 𝑘 → (𝐴 ∈ dom vol ↔ ⦋𝑘 / 𝑛⦌𝐴 ∈ dom vol)) |
| 6 | 1, 3, 5 | cbvral 3167 |
. . . 4
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
↔ ∀𝑘 ∈
ℕ ⦋𝑘 /
𝑛⦌𝐴 ∈ dom
vol) |
| 7 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑘𝐴 |
| 8 | 7, 2, 4 | cbviun 4557 |
. . . . . 6
⊢ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ 𝑘 ∈ ℕ
⦋𝑘 / 𝑛⦌𝐴 |
| 9 | | csbeq1 3536 |
. . . . . . 7
⊢ (𝑘 = 𝑚 → ⦋𝑘 / 𝑛⦌𝐴 = ⦋𝑚 / 𝑛⦌𝐴) |
| 10 | 9 | iundisj 23316 |
. . . . . 6
⊢ ∪ 𝑘 ∈ ℕ ⦋𝑘 / 𝑛⦌𝐴 = ∪ 𝑘 ∈ ℕ
(⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴) |
| 11 | 8, 10 | eqtri 2644 |
. . . . 5
⊢ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ 𝑘 ∈ ℕ
(⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴) |
| 12 | | difexg 4808 |
. . . . . . 7
⊢
(⦋𝑘 /
𝑛⦌𝐴 ∈ dom vol →
(⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴) ∈ V) |
| 13 | 12 | ralimi 2952 |
. . . . . 6
⊢
(∀𝑘 ∈
ℕ ⦋𝑘 /
𝑛⦌𝐴 ∈ dom vol →
∀𝑘 ∈ ℕ
(⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴) ∈ V) |
| 14 | | dfiun2g 4552 |
. . . . . 6
⊢
(∀𝑘 ∈
ℕ (⦋𝑘 /
𝑛⦌𝐴 ∖ ∪ 𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴) ∈ V → ∪ 𝑘 ∈ ℕ (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴) = ∪ {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)}) |
| 15 | 13, 14 | syl 17 |
. . . . 5
⊢
(∀𝑘 ∈
ℕ ⦋𝑘 /
𝑛⦌𝐴 ∈ dom vol → ∪ 𝑘 ∈ ℕ (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴) = ∪ {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)}) |
| 16 | 11, 15 | syl5eq 2668 |
. . . 4
⊢
(∀𝑘 ∈
ℕ ⦋𝑘 /
𝑛⦌𝐴 ∈ dom vol → ∪ 𝑛 ∈ ℕ 𝐴 = ∪ {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)}) |
| 17 | 6, 16 | sylbi 207 |
. . 3
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
→ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)}) |
| 18 | | eqid 2622 |
. . . . 5
⊢ (𝑘 ∈ ℕ ↦
(⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)) = (𝑘 ∈ ℕ ↦ (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)) |
| 19 | 18 | rnmpt 5371 |
. . . 4
⊢ ran
(𝑘 ∈ ℕ ↦
(⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)) = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)} |
| 20 | 19 | unieqi 4445 |
. . 3
⊢ ∪ ran (𝑘 ∈ ℕ ↦ (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)) = ∪ {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)} |
| 21 | 17, 20 | syl6eqr 2674 |
. 2
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
→ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ ran (𝑘 ∈ ℕ ↦
(⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴))) |
| 22 | 3, 5 | rspc 3303 |
. . . . . 6
⊢ (𝑘 ∈ ℕ →
(∀𝑛 ∈ ℕ
𝐴 ∈ dom vol →
⦋𝑘 / 𝑛⦌𝐴 ∈ dom vol)) |
| 23 | 22 | impcom 446 |
. . . . 5
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑘 ∈ ℕ)
→ ⦋𝑘 /
𝑛⦌𝐴 ∈ dom
vol) |
| 24 | | fzofi 12773 |
. . . . . 6
⊢
(1..^𝑘) ∈
Fin |
| 25 | | nfv 1843 |
. . . . . . . . 9
⊢
Ⅎ𝑚 𝐴 ∈ dom vol |
| 26 | | nfcsb1v 3549 |
. . . . . . . . . 10
⊢
Ⅎ𝑛⦋𝑚 / 𝑛⦌𝐴 |
| 27 | 26 | nfel1 2779 |
. . . . . . . . 9
⊢
Ⅎ𝑛⦋𝑚 / 𝑛⦌𝐴 ∈ dom vol |
| 28 | | csbeq1a 3542 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑛⦌𝐴) |
| 29 | 28 | eleq1d 2686 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝐴 ∈ dom vol ↔ ⦋𝑚 / 𝑛⦌𝐴 ∈ dom vol)) |
| 30 | 25, 27, 29 | cbvral 3167 |
. . . . . . . 8
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
↔ ∀𝑚 ∈
ℕ ⦋𝑚 /
𝑛⦌𝐴 ∈ dom
vol) |
| 31 | | fzossnn 12516 |
. . . . . . . . 9
⊢
(1..^𝑘) ⊆
ℕ |
| 32 | | ssralv 3666 |
. . . . . . . . 9
⊢
((1..^𝑘) ⊆
ℕ → (∀𝑚
∈ ℕ ⦋𝑚 / 𝑛⦌𝐴 ∈ dom vol → ∀𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴 ∈ dom vol)) |
| 33 | 31, 32 | ax-mp 5 |
. . . . . . . 8
⊢
(∀𝑚 ∈
ℕ ⦋𝑚 /
𝑛⦌𝐴 ∈ dom vol →
∀𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴 ∈ dom vol) |
| 34 | 30, 33 | sylbi 207 |
. . . . . . 7
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
→ ∀𝑚 ∈
(1..^𝑘)⦋𝑚 / 𝑛⦌𝐴 ∈ dom vol) |
| 35 | 34 | adantr 481 |
. . . . . 6
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑘 ∈ ℕ)
→ ∀𝑚 ∈
(1..^𝑘)⦋𝑚 / 𝑛⦌𝐴 ∈ dom vol) |
| 36 | | finiunmbl 23312 |
. . . . . 6
⊢
(((1..^𝑘) ∈ Fin
∧ ∀𝑚 ∈
(1..^𝑘)⦋𝑚 / 𝑛⦌𝐴 ∈ dom vol) → ∪ 𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴 ∈ dom vol) |
| 37 | 24, 35, 36 | sylancr 695 |
. . . . 5
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑘 ∈ ℕ)
→ ∪ 𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴 ∈ dom vol) |
| 38 | | difmbl 23311 |
. . . . 5
⊢
((⦋𝑘 /
𝑛⦌𝐴 ∈ dom vol ∧ ∪ 𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴 ∈ dom vol) →
(⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴) ∈ dom vol) |
| 39 | 23, 37, 38 | syl2anc 693 |
. . . 4
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑘 ∈ ℕ)
→ (⦋𝑘 /
𝑛⦌𝐴 ∖ ∪ 𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴) ∈ dom vol) |
| 40 | 39, 18 | fmptd 6385 |
. . 3
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
→ (𝑘 ∈ ℕ
↦ (⦋𝑘 /
𝑛⦌𝐴 ∖ ∪ 𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)):ℕ⟶dom vol) |
| 41 | | csbeq1 3536 |
. . . . 5
⊢ (𝑖 = 𝑚 → ⦋𝑖 / 𝑛⦌𝐴 = ⦋𝑚 / 𝑛⦌𝐴) |
| 42 | 41 | iundisj2 23317 |
. . . 4
⊢
Disj 𝑖 ∈
ℕ (⦋𝑖 /
𝑛⦌𝐴 ∖ ∪ 𝑚 ∈ (1..^𝑖)⦋𝑚 / 𝑛⦌𝐴) |
| 43 | | simpr 477 |
. . . . . 6
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑖 ∈ ℕ)
→ 𝑖 ∈
ℕ) |
| 44 | | nfcsb1v 3549 |
. . . . . . . . . 10
⊢
Ⅎ𝑛⦋𝑖 / 𝑛⦌𝐴 |
| 45 | 44 | nfel1 2779 |
. . . . . . . . 9
⊢
Ⅎ𝑛⦋𝑖 / 𝑛⦌𝐴 ∈ dom vol |
| 46 | | csbeq1a 3542 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑖 → 𝐴 = ⦋𝑖 / 𝑛⦌𝐴) |
| 47 | 46 | eleq1d 2686 |
. . . . . . . . 9
⊢ (𝑛 = 𝑖 → (𝐴 ∈ dom vol ↔ ⦋𝑖 / 𝑛⦌𝐴 ∈ dom vol)) |
| 48 | 45, 47 | rspc 3303 |
. . . . . . . 8
⊢ (𝑖 ∈ ℕ →
(∀𝑛 ∈ ℕ
𝐴 ∈ dom vol →
⦋𝑖 / 𝑛⦌𝐴 ∈ dom vol)) |
| 49 | 48 | impcom 446 |
. . . . . . 7
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑖 ∈ ℕ)
→ ⦋𝑖 /
𝑛⦌𝐴 ∈ dom
vol) |
| 50 | | difexg 4808 |
. . . . . . 7
⊢
(⦋𝑖 /
𝑛⦌𝐴 ∈ dom vol →
(⦋𝑖 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑖)⦋𝑚 / 𝑛⦌𝐴) ∈ V) |
| 51 | 49, 50 | syl 17 |
. . . . . 6
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑖 ∈ ℕ)
→ (⦋𝑖 /
𝑛⦌𝐴 ∖ ∪ 𝑚 ∈ (1..^𝑖)⦋𝑚 / 𝑛⦌𝐴) ∈ V) |
| 52 | | csbeq1 3536 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → ⦋𝑘 / 𝑛⦌𝐴 = ⦋𝑖 / 𝑛⦌𝐴) |
| 53 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑘 = 𝑖 → (1..^𝑘) = (1..^𝑖)) |
| 54 | 53 | iuneq1d 4545 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴 = ∪ 𝑚 ∈ (1..^𝑖)⦋𝑚 / 𝑛⦌𝐴) |
| 55 | 52, 54 | difeq12d 3729 |
. . . . . . 7
⊢ (𝑘 = 𝑖 → (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴) = (⦋𝑖 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑖)⦋𝑚 / 𝑛⦌𝐴)) |
| 56 | 55, 18 | fvmptg 6280 |
. . . . . 6
⊢ ((𝑖 ∈ ℕ ∧
(⦋𝑖 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑖)⦋𝑚 / 𝑛⦌𝐴) ∈ V) → ((𝑘 ∈ ℕ ↦ (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴))‘𝑖) = (⦋𝑖 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑖)⦋𝑚 / 𝑛⦌𝐴)) |
| 57 | 43, 51, 56 | syl2anc 693 |
. . . . 5
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑖 ∈ ℕ)
→ ((𝑘 ∈ ℕ
↦ (⦋𝑘 /
𝑛⦌𝐴 ∖ ∪ 𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴))‘𝑖) = (⦋𝑖 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑖)⦋𝑚 / 𝑛⦌𝐴)) |
| 58 | 57 | disjeq2dv 4625 |
. . . 4
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
→ (Disj 𝑖
∈ ℕ ((𝑘 ∈
ℕ ↦ (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴))‘𝑖) ↔ Disj 𝑖 ∈ ℕ (⦋𝑖 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑖)⦋𝑚 / 𝑛⦌𝐴))) |
| 59 | 42, 58 | mpbiri 248 |
. . 3
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
→ Disj 𝑖 ∈
ℕ ((𝑘 ∈ ℕ
↦ (⦋𝑘 /
𝑛⦌𝐴 ∖ ∪ 𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴))‘𝑖)) |
| 60 | | eqid 2622 |
. . 3
⊢ (𝑦 ∈ ℕ ↦
(vol*‘(𝑥 ∩
((𝑘 ∈ ℕ ↦
(⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴))‘𝑦)))) = (𝑦 ∈ ℕ ↦ (vol*‘(𝑥 ∩ ((𝑘 ∈ ℕ ↦ (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴))‘𝑦)))) |
| 61 | 40, 59, 60 | voliunlem2 23319 |
. 2
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
→ ∪ ran (𝑘 ∈ ℕ ↦ (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)) ∈ dom vol) |
| 62 | 21, 61 | eqeltrd 2701 |
1
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
→ ∪ 𝑛 ∈ ℕ 𝐴 ∈ dom vol) |