MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunmbl Structured version   Visualization version   GIF version

Theorem iunmbl 23321
Description: The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
iunmbl (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 ∈ dom vol)

Proof of Theorem iunmbl
Dummy variables 𝑖 𝑘 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . . 5 𝑘 𝐴 ∈ dom vol
2 nfcsb1v 3549 . . . . . 6 𝑛𝑘 / 𝑛𝐴
32nfel1 2779 . . . . 5 𝑛𝑘 / 𝑛𝐴 ∈ dom vol
4 csbeq1a 3542 . . . . . 6 (𝑛 = 𝑘𝐴 = 𝑘 / 𝑛𝐴)
54eleq1d 2686 . . . . 5 (𝑛 = 𝑘 → (𝐴 ∈ dom vol ↔ 𝑘 / 𝑛𝐴 ∈ dom vol))
61, 3, 5cbvral 3167 . . . 4 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ↔ ∀𝑘 ∈ ℕ 𝑘 / 𝑛𝐴 ∈ dom vol)
7 nfcv 2764 . . . . . . 7 𝑘𝐴
87, 2, 4cbviun 4557 . . . . . 6 𝑛 ∈ ℕ 𝐴 = 𝑘 ∈ ℕ 𝑘 / 𝑛𝐴
9 csbeq1 3536 . . . . . . 7 (𝑘 = 𝑚𝑘 / 𝑛𝐴 = 𝑚 / 𝑛𝐴)
109iundisj 23316 . . . . . 6 𝑘 ∈ ℕ 𝑘 / 𝑛𝐴 = 𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)
118, 10eqtri 2644 . . . . 5 𝑛 ∈ ℕ 𝐴 = 𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)
12 difexg 4808 . . . . . . 7 (𝑘 / 𝑛𝐴 ∈ dom vol → (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) ∈ V)
1312ralimi 2952 . . . . . 6 (∀𝑘 ∈ ℕ 𝑘 / 𝑛𝐴 ∈ dom vol → ∀𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) ∈ V)
14 dfiun2g 4552 . . . . . 6 (∀𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) ∈ V → 𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)})
1513, 14syl 17 . . . . 5 (∀𝑘 ∈ ℕ 𝑘 / 𝑛𝐴 ∈ dom vol → 𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)})
1611, 15syl5eq 2668 . . . 4 (∀𝑘 ∈ ℕ 𝑘 / 𝑛𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)})
176, 16sylbi 207 . . 3 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)})
18 eqid 2622 . . . . 5 (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)) = (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))
1918rnmpt 5371 . . . 4 ran (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)) = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)}
2019unieqi 4445 . . 3 ran (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)) = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)}
2117, 20syl6eqr 2674 . 2 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 = ran (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)))
223, 5rspc 3303 . . . . . 6 (𝑘 ∈ ℕ → (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑘 / 𝑛𝐴 ∈ dom vol))
2322impcom 446 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → 𝑘 / 𝑛𝐴 ∈ dom vol)
24 fzofi 12773 . . . . . 6 (1..^𝑘) ∈ Fin
25 nfv 1843 . . . . . . . . 9 𝑚 𝐴 ∈ dom vol
26 nfcsb1v 3549 . . . . . . . . . 10 𝑛𝑚 / 𝑛𝐴
2726nfel1 2779 . . . . . . . . 9 𝑛𝑚 / 𝑛𝐴 ∈ dom vol
28 csbeq1a 3542 . . . . . . . . . 10 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
2928eleq1d 2686 . . . . . . . . 9 (𝑛 = 𝑚 → (𝐴 ∈ dom vol ↔ 𝑚 / 𝑛𝐴 ∈ dom vol))
3025, 27, 29cbvral 3167 . . . . . . . 8 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ↔ ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ∈ dom vol)
31 fzossnn 12516 . . . . . . . . 9 (1..^𝑘) ⊆ ℕ
32 ssralv 3666 . . . . . . . . 9 ((1..^𝑘) ⊆ ℕ → (∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ∈ dom vol → ∀𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol))
3331, 32ax-mp 5 . . . . . . . 8 (∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ∈ dom vol → ∀𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol)
3430, 33sylbi 207 . . . . . . 7 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → ∀𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol)
3534adantr 481 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → ∀𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol)
36 finiunmbl 23312 . . . . . 6 (((1..^𝑘) ∈ Fin ∧ ∀𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol) → 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol)
3724, 35, 36sylancr 695 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol)
38 difmbl 23311 . . . . 5 ((𝑘 / 𝑛𝐴 ∈ dom vol ∧ 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol) → (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) ∈ dom vol)
3923, 37, 38syl2anc 693 . . . 4 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) ∈ dom vol)
4039, 18fmptd 6385 . . 3 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)):ℕ⟶dom vol)
41 csbeq1 3536 . . . . 5 (𝑖 = 𝑚𝑖 / 𝑛𝐴 = 𝑚 / 𝑛𝐴)
4241iundisj2 23317 . . . 4 Disj 𝑖 ∈ ℕ (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴)
43 simpr 477 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
44 nfcsb1v 3549 . . . . . . . . . 10 𝑛𝑖 / 𝑛𝐴
4544nfel1 2779 . . . . . . . . 9 𝑛𝑖 / 𝑛𝐴 ∈ dom vol
46 csbeq1a 3542 . . . . . . . . . 10 (𝑛 = 𝑖𝐴 = 𝑖 / 𝑛𝐴)
4746eleq1d 2686 . . . . . . . . 9 (𝑛 = 𝑖 → (𝐴 ∈ dom vol ↔ 𝑖 / 𝑛𝐴 ∈ dom vol))
4845, 47rspc 3303 . . . . . . . 8 (𝑖 ∈ ℕ → (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑖 / 𝑛𝐴 ∈ dom vol))
4948impcom 446 . . . . . . 7 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑖 ∈ ℕ) → 𝑖 / 𝑛𝐴 ∈ dom vol)
50 difexg 4808 . . . . . . 7 (𝑖 / 𝑛𝐴 ∈ dom vol → (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴) ∈ V)
5149, 50syl 17 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑖 ∈ ℕ) → (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴) ∈ V)
52 csbeq1 3536 . . . . . . . 8 (𝑘 = 𝑖𝑘 / 𝑛𝐴 = 𝑖 / 𝑛𝐴)
53 oveq2 6658 . . . . . . . . 9 (𝑘 = 𝑖 → (1..^𝑘) = (1..^𝑖))
5453iuneq1d 4545 . . . . . . . 8 (𝑘 = 𝑖 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 = 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴)
5552, 54difeq12d 3729 . . . . . . 7 (𝑘 = 𝑖 → (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) = (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴))
5655, 18fvmptg 6280 . . . . . 6 ((𝑖 ∈ ℕ ∧ (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴) ∈ V) → ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑖) = (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴))
5743, 51, 56syl2anc 693 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑖 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑖) = (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴))
5857disjeq2dv 4625 . . . 4 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → (Disj 𝑖 ∈ ℕ ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑖) ↔ Disj 𝑖 ∈ ℕ (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴)))
5942, 58mpbiri 248 . . 3 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → Disj 𝑖 ∈ ℕ ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑖))
60 eqid 2622 . . 3 (𝑦 ∈ ℕ ↦ (vol*‘(𝑥 ∩ ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑦)))) = (𝑦 ∈ ℕ ↦ (vol*‘(𝑥 ∩ ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑦))))
6140, 59, 60voliunlem2 23319 . 2 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → ran (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)) ∈ dom vol)
6221, 61eqeltrd 2701 1 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  Vcvv 3200  csb 3533  cdif 3571  cin 3573  wss 3574   cuni 4436   ciun 4520  Disj wdisj 4620  cmpt 4729  dom cdm 5114  ran crn 5115  cfv 5888  (class class class)co 6650  Fincfn 7955  1c1 9937  cn 11020  ..^cfzo 12465  vol*covol 23231  volcvol 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234
This theorem is referenced by:  volsup  23324  iunmbl2  23325  vitalilem4  23380  vitalilem5  23381  ismbf3d  23421  itg2gt0  23527  voliune  30292  dmvolsal  40564  voliunsge0lem  40689
  Copyright terms: Public domain W3C validator