Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem8 Structured version   Visualization version   GIF version

Theorem kur14lem8 31195
Description: Lemma for kur14 31198. Show that the set 𝑇 contains at most 14 elements. (It could be less if some of the operators take the same value for a given set, but Kuratowski showed that this upper bound of 14 is tight in the sense that there exist topological spaces and subsets of these spaces for which all 14 generated sets are distinct, and indeed the real numbers form such a topological space.) (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = (cls‘𝐽)
kur14lem.i 𝐼 = (int‘𝐽)
kur14lem.a 𝐴𝑋
kur14lem.b 𝐵 = (𝑋 ∖ (𝐾𝐴))
kur14lem.c 𝐶 = (𝐾‘(𝑋𝐴))
kur14lem.d 𝐷 = (𝐼‘(𝐾𝐴))
kur14lem.t 𝑇 = ((({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ∪ ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}))
Assertion
Ref Expression
kur14lem8 (𝑇 ∈ Fin ∧ (#‘𝑇) ≤ 14)

Proof of Theorem kur14lem8
StepHypRef Expression
1 kur14lem.t . 2 𝑇 = ((({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ∪ ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}))
2 eqid 2622 . . 3 (({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) = (({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))})
3 eqid 2622 . . . 4 ({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) = ({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)})
4 hashtplei 13266 . . . 4 ({𝐴, (𝑋𝐴), (𝐾𝐴)} ∈ Fin ∧ (#‘{𝐴, (𝑋𝐴), (𝐾𝐴)}) ≤ 3)
5 hashtplei 13266 . . . 4 ({𝐵, 𝐶, (𝐼𝐴)} ∈ Fin ∧ (#‘{𝐵, 𝐶, (𝐼𝐴)}) ≤ 3)
6 3nn0 11310 . . . 4 3 ∈ ℕ0
7 3p3e6 11161 . . . 4 (3 + 3) = 6
83, 4, 5, 6, 6, 7hashunlei 13212 . . 3 (({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∈ Fin ∧ (#‘({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)})) ≤ 6)
9 hashtplei 13266 . . 3 ({(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))} ∈ Fin ∧ (#‘{(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ≤ 3)
10 6nn0 11313 . . 3 6 ∈ ℕ0
11 6p3e9 11170 . . 3 (6 + 3) = 9
122, 8, 9, 10, 6, 11hashunlei 13212 . 2 ((({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ∈ Fin ∧ (#‘(({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))})) ≤ 9)
13 eqid 2622 . . 3 ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}) = ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))})
14 hashtplei 13266 . . 3 ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∈ Fin ∧ (#‘{(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))}) ≤ 3)
15 hashprlei 13250 . . 3 ({(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))} ∈ Fin ∧ (#‘{(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}) ≤ 2)
16 2nn0 11309 . . 3 2 ∈ ℕ0
17 3p2e5 11160 . . 3 (3 + 2) = 5
1813, 14, 15, 6, 16, 17hashunlei 13212 . 2 (({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}) ∈ Fin ∧ (#‘({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))})) ≤ 5)
19 9nn0 11316 . 2 9 ∈ ℕ0
20 5nn0 11312 . 2 5 ∈ ℕ0
21 9p5e14 11623 . 2 (9 + 5) = 14
221, 12, 18, 19, 20, 21hashunlei 13212 1 (𝑇 ∈ Fin ∧ (#‘𝑇) ≤ 14)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wcel 1990  cdif 3571  cun 3572  wss 3574  {cpr 4179  {ctp 4181   cuni 4436   class class class wbr 4653  cfv 5888  Fincfn 7955  1c1 9937  cle 10075  2c2 11070  3c3 11071  4c4 11072  5c5 11073  6c6 11074  9c9 11077  cdc 11493  #chash 13117  Topctop 20698  intcnt 20821  clsccl 20822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  kur14lem9  31196
  Copyright terms: Public domain W3C validator