MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemuldivd Structured version   Visualization version   GIF version

Theorem lemuldivd 11921
Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
ltmul1d.1 (𝜑𝐴 ∈ ℝ)
ltmul1d.2 (𝜑𝐵 ∈ ℝ)
ltmul1d.3 (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
lemuldivd (𝜑 → ((𝐴 · 𝐶) ≤ 𝐵𝐴 ≤ (𝐵 / 𝐶)))

Proof of Theorem lemuldivd
StepHypRef Expression
1 ltmul1d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltmul1d.2 . 2 (𝜑𝐵 ∈ ℝ)
3 ltmul1d.3 . . 3 (𝜑𝐶 ∈ ℝ+)
43rpregt0d 11878 . 2 (𝜑 → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
5 lemuldiv 10903 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) ≤ 𝐵𝐴 ≤ (𝐵 / 𝐶)))
61, 2, 4, 5syl3anc 1326 1 (𝜑 → ((𝐴 · 𝐶) ≤ 𝐵𝐴 ≤ (𝐵 / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1990   class class class wbr 4653  (class class class)co 6650  cr 9935  0cc0 9936   · cmul 9941   < clt 10074  cle 10075   / cdiv 10684  +crp 11832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-rp 11833
This theorem is referenced by:  leexp2a  12916  bitsfzolem  15156  bitsfzo  15157  bitscmp  15160  gexexlem  18255  ovolsca  23283  abelthlem7  24192  cxpaddle  24493  divsqrtsumo1  24710  fsumharmonic  24738  lgamgulmlem5  24759  basellem8  24814  fsumvma2  24939  chpchtsum  24944  chpub  24945  logexprlim  24950  efexple  25006  chpchtlim  25168  rplogsumlem2  25174  dchrisum0lem1a  25175  dchrmusum2  25183  dchrvmasumlem2  25187  dchrisum0lem1  25205  mulog2sumlem2  25224  vmalogdivsum2  25227  2vmadivsumlem  25229  selberglem2  25235  chpdifbndlem1  25242  selberg3lem1  25246  selberg4lem1  25249  pntrlog2bndlem5  25270  pntlemh  25288  pntlemn  25289  pntlemr  25291  pntlemj  25292  ttgcontlem1  25765  logdivsqrle  30728  unbdqndv2lem2  32501  itg2addnclem2  33462  fourierdlem64  40387
  Copyright terms: Public domain W3C validator