MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpub Structured version   Visualization version   GIF version

Theorem chpub 24945
Description: An upper bound on the second Chebyshev function. (Contributed by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
chpub ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (ψ‘𝐴) ≤ ((θ‘𝐴) + ((√‘𝐴) · (log‘𝐴))))

Proof of Theorem chpub
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 chpcl 24850 . . . . 5 (𝐴 ∈ ℝ → (ψ‘𝐴) ∈ ℝ)
21adantr 481 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (ψ‘𝐴) ∈ ℝ)
3 chtcl 24835 . . . . 5 (𝐴 ∈ ℝ → (θ‘𝐴) ∈ ℝ)
43adantr 481 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (θ‘𝐴) ∈ ℝ)
52, 4resubcld 10458 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) ∈ ℝ)
6 simpl 473 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ)
7 0red 10041 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ∈ ℝ)
8 1red 10055 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ)
9 0lt1 10550 . . . . . . . . . 10 0 < 1
109a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 < 1)
11 simpr 477 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ≤ 𝐴)
127, 8, 6, 10, 11ltletrd 10197 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 < 𝐴)
136, 12elrpd 11869 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ+)
1413rpge0d 11876 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ 𝐴)
156, 14resqrtcld 14156 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
16 ppifi 24832 . . . . 5 ((√‘𝐴) ∈ ℝ → ((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin)
1715, 16syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin)
1813adantr 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝐴 ∈ ℝ+)
1918relogcld 24369 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (log‘𝐴) ∈ ℝ)
2017, 19fsumrecl 14465 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴) ∈ ℝ)
2113relogcld 24369 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (log‘𝐴) ∈ ℝ)
2215, 21remulcld 10070 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴) · (log‘𝐴)) ∈ ℝ)
23 ppifi 24832 . . . . . . 7 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
2423adantr 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
25 inss2 3834 . . . . . . . . . . . 12 ((0[,]𝐴) ∩ ℙ) ⊆ ℙ
26 simpr 477 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
2725, 26sseldi 3601 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ)
28 prmnn 15388 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
2927, 28syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ)
3029nnrpd 11870 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ+)
3130relogcld 24369 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
3221adantr 481 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈ ℝ)
3329nnred 11035 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ)
34 prmuz2 15408 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
3527, 34syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (ℤ‘2))
36 eluz2b2 11761 . . . . . . . . . . . . 13 (𝑝 ∈ (ℤ‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝))
3736simprbi 480 . . . . . . . . . . . 12 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
3835, 37syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 < 𝑝)
3933, 38rplogcld 24375 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
4032, 39rerpdivcld 11903 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
41 reflcl 12597 . . . . . . . . 9 (((log‘𝐴) / (log‘𝑝)) ∈ ℝ → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℝ)
4240, 41syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℝ)
4331, 42remulcld 10070 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ ℝ)
4443recnd 10068 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ ℂ)
4531recnd 10068 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
4624, 44, 45fsumsub 14520 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = (Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)))
47 0le0 11110 . . . . . . . . 9 0 ≤ 0
4847a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ 0)
498, 6, 6, 14, 11lemul2ad 10964 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (𝐴 · 1) ≤ (𝐴 · 𝐴))
506recnd 10068 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℂ)
5150sqsqrtd 14178 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴)
5250mulid1d 10057 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (𝐴 · 1) = 𝐴)
5351, 52eqtr4d 2659 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴)↑2) = (𝐴 · 1))
5450sqvald 13005 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (𝐴↑2) = (𝐴 · 𝐴))
5549, 53, 543brtr4d 4685 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴)↑2) ≤ (𝐴↑2))
566, 14sqrtge0d 14159 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ (√‘𝐴))
5715, 6, 56, 14le2sqd 13044 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴) ≤ 𝐴 ↔ ((√‘𝐴)↑2) ≤ (𝐴↑2)))
5855, 57mpbird 247 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (√‘𝐴) ≤ 𝐴)
59 iccss 12241 . . . . . . . 8 (((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 ≤ 0 ∧ (√‘𝐴) ≤ 𝐴)) → (0[,](√‘𝐴)) ⊆ (0[,]𝐴))
607, 6, 48, 58, 59syl22anc 1327 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (0[,](√‘𝐴)) ⊆ (0[,]𝐴))
61 ssrin 3838 . . . . . . 7 ((0[,](√‘𝐴)) ⊆ (0[,]𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) ⊆ ((0[,]𝐴) ∩ ℙ))
6260, 61syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) ⊆ ((0[,]𝐴) ∩ ℙ))
6362sselda 3603 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
6443, 31resubcld 10458 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℝ)
6564recnd 10068 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℂ)
6663, 65syldan 487 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℂ)
67 eldifi 3732 . . . . . . . . . . . . . . 15 (𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
6867, 45sylan2 491 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝑝) ∈ ℂ)
6968mulid2d 10058 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (1 · (log‘𝑝)) = (log‘𝑝))
70 inss1 3833 . . . . . . . . . . . . . . . . . 18 ((0[,]𝐴) ∩ ℙ) ⊆ (0[,]𝐴)
7170, 26sseldi 3601 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (0[,]𝐴))
72 0re 10040 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
736adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ)
74 elicc2 12238 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
7572, 73, 74sylancr 695 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
7671, 75mpbid 222 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴))
7776simp3d 1075 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝𝐴)
7867, 77sylan2 491 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝𝐴)
7967, 30sylan2 491 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝 ∈ ℝ+)
8013adantr 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝐴 ∈ ℝ+)
8179, 80logled 24373 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝𝐴 ↔ (log‘𝑝) ≤ (log‘𝐴)))
8278, 81mpbid 222 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝑝) ≤ (log‘𝐴))
8369, 82eqbrtrd 4675 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (1 · (log‘𝑝)) ≤ (log‘𝐴))
84 1red 10055 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 1 ∈ ℝ)
8521adantr 481 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝐴) ∈ ℝ)
8667, 39sylan2 491 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝑝) ∈ ℝ+)
8784, 85, 86lemuldivd 11921 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((1 · (log‘𝑝)) ≤ (log‘𝐴) ↔ 1 ≤ ((log‘𝐴) / (log‘𝑝))))
8883, 87mpbid 222 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 1 ≤ ((log‘𝐴) / (log‘𝑝)))
896adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝐴 ∈ ℝ)
9089recnd 10068 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝐴 ∈ ℂ)
9190sqsqrtd 14178 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((√‘𝐴)↑2) = 𝐴)
92 eldifn 3733 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ)) → ¬ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ))
9392adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ¬ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ))
9467, 27sylan2 491 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝 ∈ ℙ)
95 elin 3796 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ) ↔ (𝑝 ∈ (0[,](√‘𝐴)) ∧ 𝑝 ∈ ℙ))
9695rbaib 947 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ℙ → (𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ) ↔ 𝑝 ∈ (0[,](√‘𝐴))))
9794, 96syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ) ↔ 𝑝 ∈ (0[,](√‘𝐴))))
98 0red 10041 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 0 ∈ ℝ)
9915adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (√‘𝐴) ∈ ℝ)
10067, 29sylan2 491 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝 ∈ ℕ)
101100nnred 11035 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝 ∈ ℝ)
10279rpge0d 11876 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 0 ≤ 𝑝)
103 elicc2 12238 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℝ ∧ (√‘𝐴) ∈ ℝ) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝 ≤ (√‘𝐴))))
104 df-3an 1039 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝 ≤ (√‘𝐴)) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝 ≤ (√‘𝐴)))
105103, 104syl6bb 276 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℝ ∧ (√‘𝐴) ∈ ℝ) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝 ≤ (√‘𝐴))))
106105baibd 948 . . . . . . . . . . . . . . . . . . . . 21 (((0 ∈ ℝ ∧ (√‘𝐴) ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝)) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ 𝑝 ≤ (√‘𝐴)))
10798, 99, 101, 102, 106syl22anc 1327 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ 𝑝 ≤ (√‘𝐴)))
10897, 107bitrd 268 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ) ↔ 𝑝 ≤ (√‘𝐴)))
10993, 108mtbid 314 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ¬ 𝑝 ≤ (√‘𝐴))
11099, 101ltnled 10184 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((√‘𝐴) < 𝑝 ↔ ¬ 𝑝 ≤ (√‘𝐴)))
111109, 110mpbird 247 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (√‘𝐴) < 𝑝)
11256adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 0 ≤ (√‘𝐴))
11399, 101, 112, 102lt2sqd 13043 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((√‘𝐴) < 𝑝 ↔ ((√‘𝐴)↑2) < (𝑝↑2)))
114111, 113mpbid 222 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((√‘𝐴)↑2) < (𝑝↑2))
11591, 114eqbrtrrd 4677 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝐴 < (𝑝↑2))
116100nnsqcld 13029 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝↑2) ∈ ℕ)
117116nnrpd 11870 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝↑2) ∈ ℝ+)
118 logltb 24346 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ+ ∧ (𝑝↑2) ∈ ℝ+) → (𝐴 < (𝑝↑2) ↔ (log‘𝐴) < (log‘(𝑝↑2))))
11980, 117, 118syl2anc 693 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝐴 < (𝑝↑2) ↔ (log‘𝐴) < (log‘(𝑝↑2))))
120115, 119mpbid 222 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝐴) < (log‘(𝑝↑2)))
121 2z 11409 . . . . . . . . . . . . . . 15 2 ∈ ℤ
122 relogexp 24342 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℝ+ ∧ 2 ∈ ℤ) → (log‘(𝑝↑2)) = (2 · (log‘𝑝)))
12379, 121, 122sylancl 694 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘(𝑝↑2)) = (2 · (log‘𝑝)))
124120, 123breqtrd 4679 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝐴) < (2 · (log‘𝑝)))
125 2re 11090 . . . . . . . . . . . . . . 15 2 ∈ ℝ
126125a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 2 ∈ ℝ)
12785, 126, 86ltdivmul2d 11924 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (((log‘𝐴) / (log‘𝑝)) < 2 ↔ (log‘𝐴) < (2 · (log‘𝑝))))
128124, 127mpbird 247 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝐴) / (log‘𝑝)) < 2)
129 df-2 11079 . . . . . . . . . . . 12 2 = (1 + 1)
130128, 129syl6breq 4694 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝐴) / (log‘𝑝)) < (1 + 1))
13167, 40sylan2 491 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
132 1z 11407 . . . . . . . . . . . 12 1 ∈ ℤ
133 flbi 12617 . . . . . . . . . . . 12 ((((log‘𝐴) / (log‘𝑝)) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘((log‘𝐴) / (log‘𝑝))) = 1 ↔ (1 ≤ ((log‘𝐴) / (log‘𝑝)) ∧ ((log‘𝐴) / (log‘𝑝)) < (1 + 1))))
134131, 132, 133sylancl 694 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((⌊‘((log‘𝐴) / (log‘𝑝))) = 1 ↔ (1 ≤ ((log‘𝐴) / (log‘𝑝)) ∧ ((log‘𝐴) / (log‘𝑝)) < (1 + 1))))
13588, 130, 134mpbir2and 957 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (⌊‘((log‘𝐴) / (log‘𝑝))) = 1)
136135oveq2d 6666 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) = ((log‘𝑝) · 1))
13768mulid1d 10057 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝑝) · 1) = (log‘𝑝))
138136, 137eqtrd 2656 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) = (log‘𝑝))
139138oveq1d 6665 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = ((log‘𝑝) − (log‘𝑝)))
14068subidd 10380 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝑝) − (log‘𝑝)) = 0)
141139, 140eqtrd 2656 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = 0)
14262, 66, 141, 24fsumss 14456 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)))
143 chpval2 24943 . . . . . . 7 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
144143adantr 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (ψ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
145 chtval 24836 . . . . . . 7 (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
146145adantr 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
147144, 146oveq12d 6668 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) = (Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)))
14846, 142, 1473eqtr4rd 2667 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) = Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)))
14963, 64syldan 487 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℝ)
15063, 43syldan 487 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ ℝ)
15163, 39syldan 487 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
152151rpge0d 11876 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 0 ≤ (log‘𝑝))
153 inss2 3834 . . . . . . . . . . . 12 ((0[,](√‘𝐴)) ∩ ℙ) ⊆ ℙ
154 simpr 477 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ))
155153, 154sseldi 3601 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ℙ)
156155, 28syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ℕ)
157156nnrpd 11870 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ℝ+)
158157relogcld 24369 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
159150, 158subge02d 10619 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (0 ≤ (log‘𝑝) ↔ (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝))))))
160152, 159mpbid 222 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
16163, 40syldan 487 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
162 flle 12600 . . . . . . . 8 (((log‘𝐴) / (log‘𝑝)) ∈ ℝ → (⌊‘((log‘𝐴) / (log‘𝑝))) ≤ ((log‘𝐴) / (log‘𝑝)))
163161, 162syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ≤ ((log‘𝐴) / (log‘𝑝)))
16463, 42syldan 487 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℝ)
165164, 19, 151lemuldiv2d 11922 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ≤ (log‘𝐴) ↔ (⌊‘((log‘𝐴) / (log‘𝑝))) ≤ ((log‘𝐴) / (log‘𝑝))))
166163, 165mpbird 247 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ≤ (log‘𝐴))
167149, 150, 19, 160, 166letrd 10194 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ (log‘𝐴))
16817, 149, 19, 167fsumle 14531 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴))
169148, 168eqbrtrd 4675 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) ≤ Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴))
17021recnd 10068 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (log‘𝐴) ∈ ℂ)
171 fsumconst 14522 . . . . 5 ((((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin ∧ (log‘𝐴) ∈ ℂ) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴) = ((#‘((0[,](√‘𝐴)) ∩ ℙ)) · (log‘𝐴)))
17217, 170, 171syl2anc 693 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴) = ((#‘((0[,](√‘𝐴)) ∩ ℙ)) · (log‘𝐴)))
173 hashcl 13147 . . . . . . 7 (((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin → (#‘((0[,](√‘𝐴)) ∩ ℙ)) ∈ ℕ0)
17417, 173syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (#‘((0[,](√‘𝐴)) ∩ ℙ)) ∈ ℕ0)
175174nn0red 11352 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (#‘((0[,](√‘𝐴)) ∩ ℙ)) ∈ ℝ)
176 logge0 24351 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ (log‘𝐴))
177 reflcl 12597 . . . . . . 7 ((√‘𝐴) ∈ ℝ → (⌊‘(√‘𝐴)) ∈ ℝ)
17815, 177syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘(√‘𝐴)) ∈ ℝ)
179 fzfid 12772 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1...(⌊‘(√‘𝐴))) ∈ Fin)
180 ppisval 24830 . . . . . . . . . . 11 ((√‘𝐴) ∈ ℝ → ((0[,](√‘𝐴)) ∩ ℙ) = ((2...(⌊‘(√‘𝐴))) ∩ ℙ))
18115, 180syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) = ((2...(⌊‘(√‘𝐴))) ∩ ℙ))
182 inss1 3833 . . . . . . . . . . 11 ((2...(⌊‘(√‘𝐴))) ∩ ℙ) ⊆ (2...(⌊‘(√‘𝐴)))
183 2eluzge1 11734 . . . . . . . . . . . 12 2 ∈ (ℤ‘1)
184 fzss1 12380 . . . . . . . . . . . 12 (2 ∈ (ℤ‘1) → (2...(⌊‘(√‘𝐴))) ⊆ (1...(⌊‘(√‘𝐴))))
185183, 184mp1i 13 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (2...(⌊‘(√‘𝐴))) ⊆ (1...(⌊‘(√‘𝐴))))
186182, 185syl5ss 3614 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((2...(⌊‘(√‘𝐴))) ∩ ℙ) ⊆ (1...(⌊‘(√‘𝐴))))
187181, 186eqsstrd 3639 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) ⊆ (1...(⌊‘(√‘𝐴))))
188 ssdomg 8001 . . . . . . . . 9 ((1...(⌊‘(√‘𝐴))) ∈ Fin → (((0[,](√‘𝐴)) ∩ ℙ) ⊆ (1...(⌊‘(√‘𝐴))) → ((0[,](√‘𝐴)) ∩ ℙ) ≼ (1...(⌊‘(√‘𝐴)))))
189179, 187, 188sylc 65 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) ≼ (1...(⌊‘(√‘𝐴))))
190 hashdom 13168 . . . . . . . . 9 ((((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin ∧ (1...(⌊‘(√‘𝐴))) ∈ Fin) → ((#‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (#‘(1...(⌊‘(√‘𝐴)))) ↔ ((0[,](√‘𝐴)) ∩ ℙ) ≼ (1...(⌊‘(√‘𝐴)))))
19117, 179, 190syl2anc 693 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((#‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (#‘(1...(⌊‘(√‘𝐴)))) ↔ ((0[,](√‘𝐴)) ∩ ℙ) ≼ (1...(⌊‘(√‘𝐴)))))
192189, 191mpbird 247 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (#‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (#‘(1...(⌊‘(√‘𝐴)))))
193 flge0nn0 12621 . . . . . . . . 9 (((√‘𝐴) ∈ ℝ ∧ 0 ≤ (√‘𝐴)) → (⌊‘(√‘𝐴)) ∈ ℕ0)
19415, 56, 193syl2anc 693 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘(√‘𝐴)) ∈ ℕ0)
195 hashfz1 13134 . . . . . . . 8 ((⌊‘(√‘𝐴)) ∈ ℕ0 → (#‘(1...(⌊‘(√‘𝐴)))) = (⌊‘(√‘𝐴)))
196194, 195syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (#‘(1...(⌊‘(√‘𝐴)))) = (⌊‘(√‘𝐴)))
197192, 196breqtrd 4679 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (#‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (⌊‘(√‘𝐴)))
198 flle 12600 . . . . . . 7 ((√‘𝐴) ∈ ℝ → (⌊‘(√‘𝐴)) ≤ (√‘𝐴))
19915, 198syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘(√‘𝐴)) ≤ (√‘𝐴))
200175, 178, 15, 197, 199letrd 10194 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (#‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (√‘𝐴))
201175, 15, 21, 176, 200lemul1ad 10963 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((#‘((0[,](√‘𝐴)) ∩ ℙ)) · (log‘𝐴)) ≤ ((√‘𝐴) · (log‘𝐴)))
202172, 201eqbrtrd 4675 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴) ≤ ((√‘𝐴) · (log‘𝐴)))
2035, 20, 22, 169, 202letrd 10194 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) ≤ ((√‘𝐴) · (log‘𝐴)))
2042, 4, 22lesubadd2d 10626 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (((ψ‘𝐴) − (θ‘𝐴)) ≤ ((√‘𝐴) · (log‘𝐴)) ↔ (ψ‘𝐴) ≤ ((θ‘𝐴) + ((√‘𝐴) · (log‘𝐴)))))
205203, 204mpbid 222 1 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (ψ‘𝐴) ≤ ((θ‘𝐴) + ((√‘𝐴) · (log‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  cdif 3571  cin 3573  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650  cdom 7953  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  +crp 11832  [,]cicc 12178  ...cfz 12326  cfl 12591  cexp 12860  #chash 13117  csqrt 13973  Σcsu 14416  cprime 15385  logclog 24301  θccht 24817  ψcchp 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cht 24823  df-vma 24824  df-chp 24825
This theorem is referenced by:  chpchtlim  25168
  Copyright terms: Public domain W3C validator