Proof of Theorem dchrisum0lem1
| Step | Hyp | Ref
| Expression |
| 1 | | fzfid 12772 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(1...(⌊‘𝑥))
∈ Fin) |
| 2 | | fzfid 12772 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(((⌊‘𝑥) +
1)...(⌊‘(𝑥↑2))) ∈ Fin) |
| 3 | | fzfid 12772 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑))) ∈ Fin) |
| 4 | | elfznn 12370 |
. . . . . . 7
⊢ (𝑑 ∈
(1...(⌊‘𝑥))
→ 𝑑 ∈
ℕ) |
| 5 | | elfzuz 12338 |
. . . . . . 7
⊢ (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1))) |
| 6 | 4, 5 | anim12i 590 |
. . . . . 6
⊢ ((𝑑 ∈
(1...(⌊‘𝑥))
∧ 𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) |
| 7 | 6 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝑑 ∈
(1...(⌊‘𝑥))
∧ 𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1))))) |
| 8 | | elfzuz 12338 |
. . . . . . 7
⊢ (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) → 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1))) |
| 9 | | elfznn 12370 |
. . . . . . 7
⊢ (𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚))) → 𝑑 ∈ ℕ) |
| 10 | 8, 9 | anim12ci 591 |
. . . . . 6
⊢ ((𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) |
| 11 | 10 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1))))) |
| 12 | | eluzelz 11697 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)) → 𝑚 ∈ ℤ) |
| 13 | 12 | ad2antll 765 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℤ) |
| 14 | 13 | zred 11482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℝ) |
| 15 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ+) |
| 16 | | 2z 11409 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℤ |
| 17 | | rpexpcl 12879 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 2 ∈ ℤ) → (𝑥↑2) ∈
ℝ+) |
| 18 | 15, 16, 17 | sylancl 694 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥↑2) ∈
ℝ+) |
| 19 | 18 | rpred 11872 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥↑2) ∈
ℝ) |
| 20 | 19 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ∈ ℝ) |
| 21 | | simprl 794 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℕ) |
| 22 | 21 | nnrpd 11870 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℝ+) |
| 23 | 14, 20, 22 | lemuldivd 11921 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑚 · 𝑑) ≤ (𝑥↑2) ↔ 𝑚 ≤ ((𝑥↑2) / 𝑑))) |
| 24 | 21 | nnred 11035 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℝ) |
| 25 | 15 | rprege0d 11879 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤
𝑥)) |
| 26 | | flge0nn0 12621 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) →
(⌊‘𝑥) ∈
ℕ0) |
| 27 | | nn0p1nn 11332 |
. . . . . . . . . . . . . 14
⊢
((⌊‘𝑥)
∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ) |
| 28 | 25, 26, 27 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((⌊‘𝑥) + 1)
∈ ℕ) |
| 29 | 28 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((⌊‘𝑥) + 1) ∈
ℕ) |
| 30 | | simprr 796 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1))) |
| 31 | | eluznn 11758 |
. . . . . . . . . . . 12
⊢
((((⌊‘𝑥)
+ 1) ∈ ℕ ∧ 𝑚
∈ (ℤ≥‘((⌊‘𝑥) + 1))) → 𝑚 ∈ ℕ) |
| 32 | 29, 30, 31 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℕ) |
| 33 | 32 | nnrpd 11870 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℝ+) |
| 34 | 24, 20, 33 | lemuldiv2d 11922 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑚 · 𝑑) ≤ (𝑥↑2) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚))) |
| 35 | 23, 34 | bitr3d 270 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚))) |
| 36 | | rpcn 11841 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℂ) |
| 37 | 36 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℂ) |
| 38 | 37 | sqvald 13005 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥↑2) = (𝑥 · 𝑥)) |
| 39 | 38 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑥↑2) = (𝑥 · 𝑥)) |
| 40 | | simplr 792 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑥 ∈ ℝ+) |
| 41 | 40 | rpred 11872 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑥 ∈ ℝ) |
| 42 | | reflcl 12597 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℝ →
(⌊‘𝑥) ∈
ℝ) |
| 43 | | peano2re 10209 |
. . . . . . . . . . . . . . . 16
⊢
((⌊‘𝑥)
∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ) |
| 44 | 41, 42, 43 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((⌊‘𝑥) + 1) ∈
ℝ) |
| 45 | | fllep1 12602 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1)) |
| 46 | 41, 45 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑥 ≤ ((⌊‘𝑥) + 1)) |
| 47 | | eluzle 11700 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)) → ((⌊‘𝑥) + 1) ≤ 𝑚) |
| 48 | 47 | ad2antll 765 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((⌊‘𝑥) + 1) ≤ 𝑚) |
| 49 | 41, 44, 14, 46, 48 | letrd 10194 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑥 ≤ 𝑚) |
| 50 | 41, 14, 40 | lemul1d 11915 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑥 ≤ 𝑚 ↔ (𝑥 · 𝑥) ≤ (𝑚 · 𝑥))) |
| 51 | 49, 50 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑥 · 𝑥) ≤ (𝑚 · 𝑥)) |
| 52 | 39, 51 | eqbrtrd 4675 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ≤ (𝑚 · 𝑥)) |
| 53 | 20, 41, 33 | ledivmuld 11925 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (((𝑥↑2) / 𝑚) ≤ 𝑥 ↔ (𝑥↑2) ≤ (𝑚 · 𝑥))) |
| 54 | 52, 53 | mpbird 247 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑚) ≤ 𝑥) |
| 55 | | nnre 11027 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈ ℕ → 𝑑 ∈
ℝ) |
| 56 | 55 | ad2antrl 764 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℝ) |
| 57 | 20, 32 | nndivred 11069 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑚) ∈ ℝ) |
| 58 | | letr 10131 |
. . . . . . . . . . . 12
⊢ ((𝑑 ∈ ℝ ∧ ((𝑥↑2) / 𝑚) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑑 ≤ ((𝑥↑2) / 𝑚) ∧ ((𝑥↑2) / 𝑚) ≤ 𝑥) → 𝑑 ≤ 𝑥)) |
| 59 | 56, 57, 41, 58 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑑 ≤ ((𝑥↑2) / 𝑚) ∧ ((𝑥↑2) / 𝑚) ≤ 𝑥) → 𝑑 ≤ 𝑥)) |
| 60 | 54, 59 | mpan2d 710 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑑 ≤ ((𝑥↑2) / 𝑚) → 𝑑 ≤ 𝑥)) |
| 61 | 35, 60 | sylbid 230 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) → 𝑑 ≤ 𝑥)) |
| 62 | 61 | pm4.71rd 667 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ (𝑑 ≤ 𝑥 ∧ 𝑚 ≤ ((𝑥↑2) / 𝑑)))) |
| 63 | | nnge1 11046 |
. . . . . . . . . . . . . 14
⊢ (𝑑 ∈ ℕ → 1 ≤
𝑑) |
| 64 | 63 | ad2antrl 764 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → 1 ≤ 𝑑) |
| 65 | | 1re 10039 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℝ |
| 66 | | 0lt1 10550 |
. . . . . . . . . . . . . . . 16
⊢ 0 <
1 |
| 67 | 65, 66 | pm3.2i 471 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
ℝ ∧ 0 < 1) |
| 68 | 67 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (1 ∈ ℝ ∧ 0
< 1)) |
| 69 | 22 | rpregt0d 11878 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑑 ∈ ℝ ∧ 0 < 𝑑)) |
| 70 | 18 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ∈
ℝ+) |
| 71 | 70 | rpregt0d 11878 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) ∈ ℝ ∧ 0 < (𝑥↑2))) |
| 72 | | lediv2 10913 |
. . . . . . . . . . . . . 14
⊢ (((1
∈ ℝ ∧ 0 < 1) ∧ (𝑑 ∈ ℝ ∧ 0 < 𝑑) ∧ ((𝑥↑2) ∈ ℝ ∧ 0 < (𝑥↑2))) → (1 ≤ 𝑑 ↔ ((𝑥↑2) / 𝑑) ≤ ((𝑥↑2) / 1))) |
| 73 | 68, 69, 71, 72 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (1 ≤ 𝑑 ↔ ((𝑥↑2) / 𝑑) ≤ ((𝑥↑2) / 1))) |
| 74 | 64, 73 | mpbid 222 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑑) ≤ ((𝑥↑2) / 1)) |
| 75 | 20 | recnd 10068 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ∈ ℂ) |
| 76 | 75 | div1d 10793 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 1) = (𝑥↑2)) |
| 77 | 74, 76 | breqtrd 4679 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑑) ≤ (𝑥↑2)) |
| 78 | | simpl 473 |
. . . . . . . . . . . . 13
⊢ ((𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1))) → 𝑑 ∈ ℕ) |
| 79 | | nndivre 11056 |
. . . . . . . . . . . . 13
⊢ (((𝑥↑2) ∈ ℝ ∧
𝑑 ∈ ℕ) →
((𝑥↑2) / 𝑑) ∈
ℝ) |
| 80 | 19, 78, 79 | syl2an 494 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑑) ∈ ℝ) |
| 81 | | letr 10131 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℝ ∧ ((𝑥↑2) / 𝑑) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((𝑚 ≤ ((𝑥↑2) / 𝑑) ∧ ((𝑥↑2) / 𝑑) ≤ (𝑥↑2)) → 𝑚 ≤ (𝑥↑2))) |
| 82 | 14, 80, 20, 81 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑚 ≤ ((𝑥↑2) / 𝑑) ∧ ((𝑥↑2) / 𝑑) ≤ (𝑥↑2)) → 𝑚 ≤ (𝑥↑2))) |
| 83 | 77, 82 | mpan2d 710 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) → 𝑚 ≤ (𝑥↑2))) |
| 84 | 35, 83 | sylbird 250 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑑 ≤ ((𝑥↑2) / 𝑚) → 𝑚 ≤ (𝑥↑2))) |
| 85 | 84 | pm4.71rd 667 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑑 ≤ ((𝑥↑2) / 𝑚) ↔ (𝑚 ≤ (𝑥↑2) ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚)))) |
| 86 | 35, 62, 85 | 3bitr3d 298 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑑 ≤ 𝑥 ∧ 𝑚 ≤ ((𝑥↑2) / 𝑑)) ↔ (𝑚 ≤ (𝑥↑2) ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚)))) |
| 87 | | fznnfl 12661 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ → (𝑑 ∈
(1...(⌊‘𝑥))
↔ (𝑑 ∈ ℕ
∧ 𝑑 ≤ 𝑥))) |
| 88 | 87 | baibd 948 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑑 ∈
(1...(⌊‘𝑥))
↔ 𝑑 ≤ 𝑥)) |
| 89 | 41, 21, 88 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ 𝑑 ≤ 𝑥)) |
| 90 | 80 | flcld 12599 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ ℤ) |
| 91 | | elfz5 12334 |
. . . . . . . . . 10
⊢ ((𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ ℤ) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑)))) |
| 92 | 30, 90, 91 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑)))) |
| 93 | | flge 12606 |
. . . . . . . . . 10
⊢ ((((𝑥↑2) / 𝑑) ∈ ℝ ∧ 𝑚 ∈ ℤ) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑)))) |
| 94 | 80, 13, 93 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑)))) |
| 95 | 92, 94 | bitr4d 271 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ↔ 𝑚 ≤ ((𝑥↑2) / 𝑑))) |
| 96 | 89, 95 | anbi12d 747 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑑 ≤ 𝑥 ∧ 𝑚 ≤ ((𝑥↑2) / 𝑑)))) |
| 97 | 20 | flcld 12599 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (⌊‘(𝑥↑2)) ∈
ℤ) |
| 98 | | elfz5 12334 |
. . . . . . . . . 10
⊢ ((𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)) ∧ (⌊‘(𝑥↑2)) ∈ ℤ) →
(𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘(𝑥↑2))) ↔ 𝑚 ≤ (⌊‘(𝑥↑2)))) |
| 99 | 30, 97, 98 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ↔ 𝑚 ≤ (⌊‘(𝑥↑2)))) |
| 100 | | flge 12606 |
. . . . . . . . . 10
⊢ (((𝑥↑2) ∈ ℝ ∧
𝑚 ∈ ℤ) →
(𝑚 ≤ (𝑥↑2) ↔ 𝑚 ≤ (⌊‘(𝑥↑2)))) |
| 101 | 20, 13, 100 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ (𝑥↑2) ↔ 𝑚 ≤ (⌊‘(𝑥↑2)))) |
| 102 | 99, 101 | bitr4d 271 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ↔ 𝑚 ≤ (𝑥↑2))) |
| 103 | | fznnfl 12661 |
. . . . . . . . . 10
⊢ (((𝑥↑2) / 𝑚) ∈ ℝ → (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) ↔ (𝑑 ∈ ℕ ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚)))) |
| 104 | 103 | baibd 948 |
. . . . . . . . 9
⊢ ((((𝑥↑2) / 𝑚) ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚))) |
| 105 | 57, 21, 104 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚))) |
| 106 | 102, 105 | anbi12d 747 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) ↔ (𝑚 ≤ (𝑥↑2) ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚)))) |
| 107 | 86, 96, 106 | 3bitr4d 300 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1)))) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))))) |
| 108 | 107 | ex 450 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝑑 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘((⌊‘𝑥) + 1))) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))))))) |
| 109 | 7, 11, 108 | pm5.21ndd 369 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝑑 ∈
(1...(⌊‘𝑥))
∧ 𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))))) |
| 110 | | ssun2 3777 |
. . . . . . . 8
⊢
(((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑))) ⊆ ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) |
| 111 | 28 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((⌊‘𝑥) +
1) ∈ ℕ) |
| 112 | | nnuz 11723 |
. . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘1) |
| 113 | 111, 112 | syl6eleq 2711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((⌊‘𝑥) +
1) ∈ (ℤ≥‘1)) |
| 114 | | dchrisum0lem1a 25175 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 ≤ ((𝑥↑2) / 𝑑) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈
(ℤ≥‘(⌊‘𝑥)))) |
| 115 | 114 | simprd 479 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (⌊‘((𝑥↑2) / 𝑑)) ∈
(ℤ≥‘(⌊‘𝑥))) |
| 116 | | fzsplit2 12366 |
. . . . . . . . 9
⊢
((((⌊‘𝑥)
+ 1) ∈ (ℤ≥‘1) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈
(ℤ≥‘(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))))) |
| 117 | 113, 115,
116 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (1...(⌊‘((𝑥↑2) / 𝑑))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))))) |
| 118 | 110, 117 | syl5sseqr 3654 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑))) ⊆ (1...(⌊‘((𝑥↑2) / 𝑑)))) |
| 119 | 118 | sselda 3603 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) |
| 120 | | rpvmasum2.g |
. . . . . . . . 9
⊢ 𝐺 = (DChr‘𝑁) |
| 121 | | rpvmasum.z |
. . . . . . . . 9
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
| 122 | | rpvmasum2.d |
. . . . . . . . 9
⊢ 𝐷 = (Base‘𝐺) |
| 123 | | rpvmasum.l |
. . . . . . . . 9
⊢ 𝐿 = (ℤRHom‘𝑍) |
| 124 | | rpvmasum2.w |
. . . . . . . . . . . . 13
⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} |
| 125 | | ssrab2 3687 |
. . . . . . . . . . . . 13
⊢ {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} ⊆ (𝐷 ∖ { 1 }) |
| 126 | 124, 125 | eqsstri 3635 |
. . . . . . . . . . . 12
⊢ 𝑊 ⊆ (𝐷 ∖ { 1 }) |
| 127 | | dchrisum0.b |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ 𝑊) |
| 128 | 126, 127 | sseldi 3601 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ (𝐷 ∖ { 1 })) |
| 129 | 128 | eldifad 3586 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| 130 | 129 | ad3antrrr 766 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑋 ∈ 𝐷) |
| 131 | | elfzelz 12342 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ ℤ) |
| 132 | 131 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℤ) |
| 133 | 120, 121,
122, 123, 130, 132 | dchrzrhcl 24970 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑋‘(𝐿‘𝑚)) ∈ ℂ) |
| 134 | | elfznn 12370 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ ℕ) |
| 135 | 134 | adantl 482 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℕ) |
| 136 | 135 | nnrpd 11870 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℝ+) |
| 137 | 136 | rpsqrtcld 14150 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ∈
ℝ+) |
| 138 | 137 | rpcnd 11874 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ∈ ℂ) |
| 139 | 137 | rpne0d 11877 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ≠ 0) |
| 140 | 133, 138,
139 | divcld 10801 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → ((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) ∈ ℂ) |
| 141 | 4 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ∈
ℕ) |
| 142 | 141 | nnrpd 11870 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ∈
ℝ+) |
| 143 | 142 | rpsqrtcld 14150 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (√‘𝑑)
∈ ℝ+) |
| 144 | 143 | rpcnne0d 11881 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((√‘𝑑)
∈ ℂ ∧ (√‘𝑑) ≠ 0)) |
| 145 | 144 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → ((√‘𝑑) ∈ ℂ ∧
(√‘𝑑) ≠
0)) |
| 146 | 145 | simpld 475 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑑) ∈ ℂ) |
| 147 | 145 | simprd 479 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑑) ≠ 0) |
| 148 | 140, 146,
147 | divcld 10801 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘((𝑥↑2) / 𝑑)))) → (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ) |
| 149 | 119, 148 | syldan 487 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑)))) → (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ) |
| 150 | 149 | anasss 679 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑑 ∈
(1...(⌊‘𝑥))
∧ 𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑))))) → (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ) |
| 151 | 1, 2, 3, 109, 150 | fsumcom2 14505 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) = Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) |
| 152 | 151 | mpteq2dva 4744 |
. 2
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑑 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) = (𝑥 ∈ ℝ+ ↦
Σ𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)))) |
| 153 | 65 | a1i 11 |
. . 3
⊢ (𝜑 → 1 ∈
ℝ) |
| 154 | | 2cn 11091 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
| 155 | 15 | rpsqrtcld 14150 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(√‘𝑥) ∈
ℝ+) |
| 156 | 155 | rpcnd 11874 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(√‘𝑥) ∈
ℂ) |
| 157 | | mulcl 10020 |
. . . . . . . 8
⊢ ((2
∈ ℂ ∧ (√‘𝑥) ∈ ℂ) → (2 ·
(√‘𝑥)) ∈
ℂ) |
| 158 | 154, 156,
157 | sylancr 695 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (2
· (√‘𝑥))
∈ ℂ) |
| 159 | 143 | rprecred 11883 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (1 / (√‘𝑑)) ∈ ℝ) |
| 160 | 1, 159 | fsumrecl 14465 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ∈
ℝ) |
| 161 | 160 | recnd 10068 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ∈
ℂ) |
| 162 | 161, 158 | subcld 10392 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥))) ∈ ℂ) |
| 163 | | 2re 11090 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
| 164 | | dchrisum0.c |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) |
| 165 | | elrege0 12278 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ (0[,)+∞) ↔
(𝐶 ∈ ℝ ∧ 0
≤ 𝐶)) |
| 166 | 164, 165 | sylib 208 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) |
| 167 | 166 | simpld 475 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 168 | | remulcl 10021 |
. . . . . . . . . . 11
⊢ ((2
∈ ℝ ∧ 𝐶
∈ ℝ) → (2 · 𝐶) ∈ ℝ) |
| 169 | 163, 167,
168 | sylancr 695 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · 𝐶) ∈
ℝ) |
| 170 | 169 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (2
· 𝐶) ∈
ℝ) |
| 171 | 170, 155 | rerpdivcld 11903 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((2
· 𝐶) /
(√‘𝑥)) ∈
ℝ) |
| 172 | 171 | recnd 10068 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((2
· 𝐶) /
(√‘𝑥)) ∈
ℂ) |
| 173 | 158, 162,
172 | adddird 10065 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (((2
· (√‘𝑥))
+ (Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥)))) · ((2 · 𝐶) / (√‘𝑥))) = (((2 · (√‘𝑥)) · ((2 · 𝐶) / (√‘𝑥))) + ((Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥))))) |
| 174 | 158, 161 | pncan3d 10395 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((2
· (√‘𝑥))
+ (Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥)))) = Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑))) |
| 175 | 174 | oveq1d 6665 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (((2
· (√‘𝑥))
+ (Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥)))) · ((2 · 𝐶) / (√‘𝑥))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))) |
| 176 | | 2cnd 11093 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 2 ∈
ℂ) |
| 177 | 176, 156,
172 | mulassd 10063 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((2
· (√‘𝑥))
· ((2 · 𝐶) /
(√‘𝑥))) = (2
· ((√‘𝑥)
· ((2 · 𝐶) /
(√‘𝑥))))) |
| 178 | 170 | recnd 10068 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (2
· 𝐶) ∈
ℂ) |
| 179 | 155 | rpne0d 11877 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(√‘𝑥) ≠
0) |
| 180 | 178, 156,
179 | divcan2d 10803 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((√‘𝑥) ·
((2 · 𝐶) /
(√‘𝑥))) = (2
· 𝐶)) |
| 181 | 180 | oveq2d 6666 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (2
· ((√‘𝑥)
· ((2 · 𝐶) /
(√‘𝑥)))) = (2
· (2 · 𝐶))) |
| 182 | 177, 181 | eqtrd 2656 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((2
· (√‘𝑥))
· ((2 · 𝐶) /
(√‘𝑥))) = (2
· (2 · 𝐶))) |
| 183 | 182 | oveq1d 6665 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (((2
· (√‘𝑥))
· ((2 · 𝐶) /
(√‘𝑥))) +
((Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))) = ((2 · (2 · 𝐶)) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 ·
(√‘𝑥)))
· ((2 · 𝐶) /
(√‘𝑥))))) |
| 184 | 173, 175,
183 | 3eqtr3d 2664 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥))) = ((2
· (2 · 𝐶)) +
((Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥))))) |
| 185 | 184 | mpteq2dva 4744 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥)))) =
(𝑥 ∈
ℝ+ ↦ ((2 · (2 · 𝐶)) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 ·
(√‘𝑥)))
· ((2 · 𝐶) /
(√‘𝑥)))))) |
| 186 | | remulcl 10021 |
. . . . . . . 8
⊢ ((2
∈ ℝ ∧ (2 · 𝐶) ∈ ℝ) → (2 · (2
· 𝐶)) ∈
ℝ) |
| 187 | 163, 169,
186 | sylancr 695 |
. . . . . . 7
⊢ (𝜑 → (2 · (2 ·
𝐶)) ∈
ℝ) |
| 188 | 187 | recnd 10068 |
. . . . . 6
⊢ (𝜑 → (2 · (2 ·
𝐶)) ∈
ℂ) |
| 189 | 188 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (2
· (2 · 𝐶))
∈ ℂ) |
| 190 | 162, 172 | mulcld 10060 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥))) ∈ ℂ) |
| 191 | | rpssre 11843 |
. . . . . 6
⊢
ℝ+ ⊆ ℝ |
| 192 | | o1const 14350 |
. . . . . 6
⊢
((ℝ+ ⊆ ℝ ∧ (2 · (2 ·
𝐶)) ∈ ℂ) →
(𝑥 ∈
ℝ+ ↦ (2 · (2 · 𝐶))) ∈ 𝑂(1)) |
| 193 | 191, 188,
192 | sylancr 695 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (2
· (2 · 𝐶)))
∈ 𝑂(1)) |
| 194 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
↦ (Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦
(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥)))) |
| 195 | 194 | divsqrsum 24708 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
↦ (Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥)))) ∈ dom
⇝𝑟 |
| 196 | | rlimdmo1 14348 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
↦ (Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥)))) ∈ dom ⇝𝑟
→ (𝑥 ∈
ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 ·
(√‘𝑥)))) ∈
𝑂(1)) |
| 197 | 195, 196 | mp1i 13 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥)))) ∈ 𝑂(1)) |
| 198 | 178, 156,
179 | divrecd 10804 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((2
· 𝐶) /
(√‘𝑥)) = ((2
· 𝐶) · (1 /
(√‘𝑥)))) |
| 199 | 198 | mpteq2dva 4744 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2
· 𝐶) /
(√‘𝑥))) =
(𝑥 ∈
ℝ+ ↦ ((2 · 𝐶) · (1 / (√‘𝑥))))) |
| 200 | 155 | rprecred 11883 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1 /
(√‘𝑥)) ∈
ℝ) |
| 201 | 169 | recnd 10068 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · 𝐶) ∈
ℂ) |
| 202 | | rlimconst 14275 |
. . . . . . . . . 10
⊢
((ℝ+ ⊆ ℝ ∧ (2 · 𝐶) ∈ ℂ) → (𝑥 ∈ ℝ+
↦ (2 · 𝐶))
⇝𝑟 (2 · 𝐶)) |
| 203 | 191, 201,
202 | sylancr 695 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (2
· 𝐶))
⇝𝑟 (2 · 𝐶)) |
| 204 | | sqrtlim 24699 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
↦ (1 / (√‘𝑥))) ⇝𝑟
0 |
| 205 | 204 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (1 /
(√‘𝑥)))
⇝𝑟 0) |
| 206 | 170, 200,
203, 205 | rlimmul 14375 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2
· 𝐶) · (1 /
(√‘𝑥))))
⇝𝑟 ((2 · 𝐶) · 0)) |
| 207 | 199, 206 | eqbrtrd 4675 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2
· 𝐶) /
(√‘𝑥)))
⇝𝑟 ((2 · 𝐶) · 0)) |
| 208 | | rlimo1 14347 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
↦ ((2 · 𝐶) /
(√‘𝑥)))
⇝𝑟 ((2 · 𝐶) · 0) → (𝑥 ∈ ℝ+ ↦ ((2
· 𝐶) /
(√‘𝑥))) ∈
𝑂(1)) |
| 209 | 207, 208 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2
· 𝐶) /
(√‘𝑥))) ∈
𝑂(1)) |
| 210 | 162, 172,
197, 209 | o1mul2 14355 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
((Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))) ∈ 𝑂(1)) |
| 211 | 189, 190,
193, 210 | o1add2 14354 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2
· (2 · 𝐶)) +
((Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) −
(2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥))))) ∈ 𝑂(1)) |
| 212 | 185, 211 | eqeltrd 2701 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥)))) ∈
𝑂(1)) |
| 213 | 160, 171 | remulcld 10070 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥))) ∈
ℝ) |
| 214 | 3, 149 | fsumcl 14464 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ Σ𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ) |
| 215 | 1, 214 | fsumcl 14464 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ) |
| 216 | 215 | abscld 14175 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ ℝ) |
| 217 | 213 | recnd 10068 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥))) ∈
ℂ) |
| 218 | 217 | abscld 14175 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥)))) ∈
ℝ) |
| 219 | 214 | abscld 14175 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘Σ𝑚
∈ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ ℝ) |
| 220 | 1, 219 | fsumrecl 14465 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ ℝ) |
| 221 | 1, 214 | fsumabs 14533 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)))) |
| 222 | 171 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((2 · 𝐶) /
(√‘𝑥)) ∈
ℝ) |
| 223 | 159, 222 | remulcld 10070 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) ∈ ℝ) |
| 224 | 119, 140 | syldan 487 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑)))) → ((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) ∈ ℂ) |
| 225 | 3, 224 | fsumcl 14464 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ Σ𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) ∈ ℂ) |
| 226 | 225 | abscld 14175 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘Σ𝑚
∈ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) ∈ ℝ) |
| 227 | | rpvmasum.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 228 | | rpvmasum2.1 |
. . . . . . . . . . 11
⊢ 1 =
(0g‘𝐺) |
| 229 | | dchrisum0lem1.f |
. . . . . . . . . . 11
⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))) |
| 230 | | dchrisum0.s |
. . . . . . . . . . 11
⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) |
| 231 | | dchrisum0.1 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦))) |
| 232 | 121, 123,
227, 120, 122, 228, 124, 127, 229, 164, 230, 231 | dchrisum0lem1b 25204 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘Σ𝑚
∈ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) ≤ ((2 · 𝐶) / (√‘𝑥))) |
| 233 | 226, 222,
143, 232 | lediv1dd 11930 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((abs‘Σ𝑚
∈ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) / (√‘𝑑)) ≤ (((2 · 𝐶) / (√‘𝑥)) / (√‘𝑑))) |
| 234 | 143 | rpcnd 11874 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (√‘𝑑)
∈ ℂ) |
| 235 | 143 | rpne0d 11877 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (√‘𝑑)
≠ 0) |
| 236 | 225, 234,
235 | absdivd 14194 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘(Σ𝑚
∈ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) = ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) / (abs‘(√‘𝑑)))) |
| 237 | 3, 234, 224, 235 | fsumdivc 14518 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (Σ𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) = Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) |
| 238 | 237 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘(Σ𝑚
∈ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) = (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)))) |
| 239 | 143 | rprege0d 11879 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((√‘𝑑)
∈ ℝ ∧ 0 ≤ (√‘𝑑))) |
| 240 | | absid 14036 |
. . . . . . . . . . . 12
⊢
(((√‘𝑑)
∈ ℝ ∧ 0 ≤ (√‘𝑑)) → (abs‘(√‘𝑑)) = (√‘𝑑)) |
| 241 | 239, 240 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘(√‘𝑑)) = (√‘𝑑)) |
| 242 | 241 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((abs‘Σ𝑚
∈ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) / (abs‘(√‘𝑑))) = ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) / (√‘𝑑))) |
| 243 | 236, 238,
242 | 3eqtr3rd 2665 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((abs‘Σ𝑚
∈ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) / (√‘𝑑)) = (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)))) |
| 244 | 172 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((2 · 𝐶) /
(√‘𝑥)) ∈
ℂ) |
| 245 | 244, 234,
235 | divrec2d 10805 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (((2 · 𝐶) /
(√‘𝑥)) /
(√‘𝑑)) = ((1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥)))) |
| 246 | 233, 243,
245 | 3brtr3d 4684 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘Σ𝑚
∈ (((⌊‘𝑥)
+ 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ ((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))) |
| 247 | 1, 219, 223, 246 | fsumle 14531 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))) |
| 248 | 159 | recnd 10068 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (1 / (√‘𝑑)) ∈ ℂ) |
| 249 | 1, 172, 248 | fsummulc1 14517 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥))) =
Σ𝑑 ∈
(1...(⌊‘𝑥))((1
/ (√‘𝑑))
· ((2 · 𝐶) /
(√‘𝑥)))) |
| 250 | 247, 249 | breqtrrd 4681 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))) |
| 251 | 216, 220,
213, 221, 250 | letrd 10194 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))) |
| 252 | 213 | leabsd 14153 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥))) ≤
(abs‘(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥))))) |
| 253 | 216, 213,
218, 251, 252 | letrd 10194 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (abs‘(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥))))) |
| 254 | 253 | adantrr 753 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (abs‘(Σ𝑑 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑑)) ·
((2 · 𝐶) /
(√‘𝑥))))) |
| 255 | 153, 212,
213, 215, 254 | o1le 14383 |
. 2
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑑 ∈
(1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1)) |
| 256 | 152, 255 | eqeltrrd 2702 |
1
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1)) |